Point defect engineered Si sub-bandgap light-emitting diode.
暂无分享,去创建一个
Federico Capasso | Jiming Bao | Supakit Charnvanichborikarn | Malek Tabbal | Taegon Kim | F. Capasso | J. Bao | Taegon Kim | S. Charnvanichborikarn | M. Aziz | M. Tabbal | Michael J Aziz | James S. Williams | James S Williams
[1] Michael J. Aziz,et al. Interface attachment kinetics in alloy solidification , 1996 .
[2] S. Cloutier,et al. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon , 2005, Nature materials.
[3] D. J. Lockwood,et al. Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.
[4] M. Nakamura,et al. Oxygen participation in the formation of the photoluminescence W center and the center’s origin in ion-implanted silicon crystals , 1998 .
[5] A. G. Cullis,et al. Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.
[6] J. Poate,et al. Room‐temperature sharp line electroluminescence at λ=1.54 μm from an erbium‐doped, silicon light‐emitting diode , 1994 .
[7] G. Shao,et al. An efficient room-temperature silicon-based light-emitting diode , 2001, Nature.
[8] J. Coutinho,et al. Density-functional study of small interstitial clusters in Si: Comparison with experiments , 2005 .
[9] Michael O. Thompson,et al. Experimental test of morphological stability theory for a planar interface during rapid solidification , 1998 .
[10] D. Hall,et al. Optical emission at 1.32 μm from sulfur‐doped crystalline silicon , 1986 .
[11] V. Fiorentini,et al. Structure, energetics, and extrinsic levels of small self-interstitial clusters in silicon , 2004 .
[12] D. Hall,et al. Concentration dependence of optical emission from sulfur‐doped crystalline silicon , 1987 .
[13] Thomas G. Brown,et al. Electroluminescence from sulfur impurities in a p‐n junction formed in epitaxial silicon , 1989 .
[14] M. S. Skolnick,et al. Defect photoluminescence from pulsed‐laser‐annealed ion‐implanted Si , 1981 .
[15] C. Spinella,et al. Transition from small interstitial clusters to extended {311} defects in ion-implanted Si , 2000 .
[16] Michael O. Thompson,et al. Complete experimental test of kinetic models for rapid alloy solidification , 2000 .
[17] R. Elliman,et al. Activation energy for the photoluminescence W center in silicon , 1992 .
[18] H. Grubin. The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.
[19] E. Rimini,et al. Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted silicon , 2001 .
[20] E. A. Steinman,et al. Room-temperature silicon light-emitting diodes based on dislocation luminescence , 2004 .
[21] K. D. Hirschman,et al. Silicon-based visible light-emitting devices integrated into microelectronic circuits , 1996, Nature.
[22] Einar Ö. Sveinbjörnsson,et al. Room temperature electroluminescence from dislocation‐rich silicon , 1996 .
[23] D. Leong,et al. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm , 1997, Nature.