Point defect engineered Si sub-bandgap light-emitting diode.

We present a novel approach to enhance light emission in Si and demonstrate a sub-bandgap light emitting diode based on the introduction of point defects that enhance the radiative recombination rate. Ion implantation, pulsed laser melting and rapid thermal annealing were used to create a diode containing a self-interstitial-rich optically active region from which the zero-phonon emission line at 1218 nm originates.

[1]  Michael J. Aziz,et al.  Interface attachment kinetics in alloy solidification , 1996 .

[2]  S. Cloutier,et al.  Optical gain and stimulated emission in periodic nanopatterned crystalline silicon , 2005, Nature materials.

[3]  D. J. Lockwood,et al.  Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.

[4]  M. Nakamura,et al.  Oxygen participation in the formation of the photoluminescence W center and the center’s origin in ion-implanted silicon crystals , 1998 .

[5]  A. G. Cullis,et al.  Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.

[6]  J. Poate,et al.  Room‐temperature sharp line electroluminescence at λ=1.54 μm from an erbium‐doped, silicon light‐emitting diode , 1994 .

[7]  G. Shao,et al.  An efficient room-temperature silicon-based light-emitting diode , 2001, Nature.

[8]  J. Coutinho,et al.  Density-functional study of small interstitial clusters in Si: Comparison with experiments , 2005 .

[9]  Michael O. Thompson,et al.  Experimental test of morphological stability theory for a planar interface during rapid solidification , 1998 .

[10]  D. Hall,et al.  Optical emission at 1.32 μm from sulfur‐doped crystalline silicon , 1986 .

[11]  V. Fiorentini,et al.  Structure, energetics, and extrinsic levels of small self-interstitial clusters in silicon , 2004 .

[12]  D. Hall,et al.  Concentration dependence of optical emission from sulfur‐doped crystalline silicon , 1987 .

[13]  Thomas G. Brown,et al.  Electroluminescence from sulfur impurities in a p‐n junction formed in epitaxial silicon , 1989 .

[14]  M. S. Skolnick,et al.  Defect photoluminescence from pulsed‐laser‐annealed ion‐implanted Si , 1981 .

[15]  C. Spinella,et al.  Transition from small interstitial clusters to extended {311} defects in ion-implanted Si , 2000 .

[16]  Michael O. Thompson,et al.  Complete experimental test of kinetic models for rapid alloy solidification , 2000 .

[17]  R. Elliman,et al.  Activation energy for the photoluminescence W center in silicon , 1992 .

[18]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[19]  E. Rimini,et al.  Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted silicon , 2001 .

[20]  E. A. Steinman,et al.  Room-temperature silicon light-emitting diodes based on dislocation luminescence , 2004 .

[21]  K. D. Hirschman,et al.  Silicon-based visible light-emitting devices integrated into microelectronic circuits , 1996, Nature.

[22]  Einar Ö. Sveinbjörnsson,et al.  Room temperature electroluminescence from dislocation‐rich silicon , 1996 .

[23]  D. Leong,et al.  A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm , 1997, Nature.