Soliton Solutions of the KP Equation and Application to Shallow Water Waves

The main purpose of this paper is to give a survey of recent development on a classification of soliton solutions of the KP equation. The paper is self-contained, and we give a complete proof for the theorems needed for the classification. The classification is based on the Schubert decomposition of the real Grassmann manifold, Gr$(N,M)$, the set of $N$-dimensional subspaces in $\mathbb{R}^M$. Each soliton solution defined on Gr$(N,M)$ asymptotically consists of the $N$ number of line-solitons for $y\gg 0$ and the $M-N$ number of line-solitons for $y\ll 0$. In particular, we give the detailed description of those soliton solutions associated with Gr$(2,4)$, which play a fundamental role of multi-soliton solutions. We then consider a physical application of some of those solutions related to the Mach reflection discussed by J. Miles in 1977.

[1]  Lauren K. Williams,et al.  Enumeration of totally positive Grassmann cells , 2003, math/0307271.

[2]  Gino Biondini,et al.  On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy , 2003, nlin/0306003.

[3]  New Subhierarchies of the KP Hierarchy in the Sato Theory.II.Truncation of the KP Hierarchy , 1987 .

[4]  Gino Biondini,et al.  Soliton solutions of the Kadomtsev-Petviashvili II equation , 2006 .

[5]  M. Funakoshi Reflection of Obliquely Incident Solitary Waves , 1980 .

[6]  New subhierarchies of the KP hierarchy in the Sato theory. I: Analysis of the Burgers-Hopf hierarchy by the Sato theory , 1985 .

[7]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[8]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[9]  V. Zakharov,et al.  Korteweg-de Vries equation: A completely integrable Hamiltonian system , 1971 .

[10]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[11]  John W. Miles,et al.  Resonantly interacting solitary waves , 1977, Journal of Fluid Mechanics.

[12]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[13]  A. Porubov,et al.  Formation of the rogue wave due to non-linear two-dimensional waves interaction , 2005 .

[14]  Alexander Postnikov,et al.  Total positivity, Grassmannians, and networks , 2006 .

[15]  H. Ikezi,et al.  Two-Dimensional Interaction of Ion-Acoustic Solitons , 1980 .

[16]  L. Dickey Soliton Equations and Hamiltonian Systems , 2003 .

[17]  Peter A. Clarkson,et al.  THE DIRECT METHOD IN SOLITON THEORY (Cambridge Tracts in Mathematics 155) , 2006 .

[18]  H. Tsuji,et al.  Oblique Interaction of Solitons in an Extended Kadomtsev-Petviashvili Equation(Electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid mechanics) , 2007 .

[19]  M. Reid,et al.  Solitons : differential equations, symmetries and infinite dimensional algebras , 2000 .

[20]  Yuji Kodama,et al.  Classification of the line-soliton solutions of KPII , 2007, 0710.1456.

[21]  B. Kadomtsev,et al.  On the Stability of Solitary Waves in Weakly Dispersing Media , 1970 .

[22]  Mikio Sato Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .

[23]  Elena Medina,et al.  An N Soliton Resonance Solution for the KP Equation: Interaction with Change of Form and Velocity , 2002 .

[24]  M. Boiti,et al.  Towards an inverse scattering theory for non-decaying potentials of the heat equation , 2001, nlin/0101030.

[25]  F. Kako,et al.  Interaction of ion-acoustic solitions in multi-dimensional space, 2 , 1981 .

[26]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[27]  Alan C. Newell,et al.  Breakdown of Zakharov-Shabat theory and soliton creation , 1977 .

[28]  Yu-ren Shi,et al.  Theoretical study of resonance of the Kadomtsev–Petviashvili equation , 2004 .

[29]  Joseph B. Keller,et al.  Three-dimensional water waves , 1996 .

[30]  Yuji Kodama,et al.  Young diagrams and N-soliton solutions of the KP equation , 2004, nlin/0406033.

[31]  Y. Nishida,et al.  Virtual states in strong interactions of plane ion-acoustic solitons , 1983 .

[32]  Fujio Kako,et al.  Interaction of ion-acoustic solitons in two-dimensional space , 1978 .

[33]  Tarmo Soomere,et al.  Interaction of Kadomtsev¿Petviashvili solitons with unequal amplitudes , 2004 .

[34]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[35]  広田 良吾,et al.  The direct method in soliton theory , 2004 .