Transform domain characterization of cyclic codes overZm

Cyclic codes with symbols from a residue class integer ringZm are characterized in terms of the discrete Fourier transform (DFT) of codewords defined over an appropriate extension ring ofZm. It is shown that a cyclic code of length n overZm,n relatively prime tom, consists ofn-tuples overZm having a specified set of DFT coefficients from the elements of an ideal of a subring of the extension ring. Whenm is equal to a product of distinct primes every cyclic code overZm has an idempotent generator and it is shown that the idempotent generators can be easily identified in the transform domain. The dual code pairs overZm are characterized in the transform domain for cyclic codes. Necessary and sufficient conditions for the existence of self-dual codes overZm are obtained and nonexistence of self-dual codes for certain values ofm is proved.

[1]  N. J. A. Sloane,et al.  Shift-Register Synthesis (Modula m) , 1985, CRYPTO.

[2]  P Shankar On BCH codes over arbitrary integer rings , 1979 .

[3]  Jack K. Wolf,et al.  On Channels and Codes for the Lee Metric , 1971, Inf. Control..

[4]  Ian F. Blake Codes over Integer Residue Rings , 1975, Inf. Control..

[5]  P. Delsarte Bounds for unrestricted codes, by linear programming , 1972 .

[6]  Virgilio Sison,et al.  Convolutional Codes Over Rings , 2005 .

[7]  Anastasios N. Venetsanopoulos,et al.  The Discrete Fourier Transform Over Finite Rings with Application to Fast Convolution , 1978, IEEE Transactions on Computers.

[8]  B. R. McDonald Finite Rings With Identity , 1974 .

[9]  Eugene Spiegel Codes over Z_m, Revisited , 1978, Inf. Control..

[10]  Eugene Spiegel Codes over Z_m , 1977, Inf. Control..

[11]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[12]  N. J. A. Sloane,et al.  Shift-Register Synthesis (Modulo m) , 1985, SIAM J. Comput..

[13]  Priti Shankar On BCH codes over arbitrary integer tings (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[14]  R. Blahut Theory and practice of error control codes , 1983 .

[15]  Hideo Murakami,et al.  A transform decoder for Reed-Solomon codes in multiple-user communication systems , 1977, IEEE Trans. Inf. Theory.

[16]  Ian F. Blake Codes Over Certain Rings , 1972, Inf. Control..

[17]  Jean-Bernard Martens,et al.  Convolution using a conjugate symmetry property for number theoretic transforms over rings of regular integers , 1983 .

[18]  Mohammad Umar Siddiqi,et al.  Transform decoding of BCH codes over Zm , 1993 .

[19]  F. W. Lemire,et al.  A Structure Theorem for Rings Supporting a Discrete Fourier Transform , 1981 .