Transcription in trypanosomes: a different means to the end

The recent publication of T. brucei genome has enabled a new wave of molecular and genetic experiments, which have resulted in a clearer picture of the transcription machinery in this organism. While trypanosomes possess most of the subunits common to the three RNA polymerases typically found in eukaryotes, a number of interesting differences exist, presumably reflecting their early divergence from the eukaryote crown lineage. Most notably, the absence of many class-specific RNAP subunits, and paucity of general transcription factors, suggests that the intricate, and varied, mechanisms for regulation of transcript initiation in higher eukaryotes arose after this divergence. It appears that the Tritryp transcriptional apparatus may be the most primitive yet identified in the Eukarya, containing perhaps a single shared set of GTFs for transcription initiation. Indeed, the RNAP I and II promoters described in T. brucei share structural similarities with the RNAP III type III promoters of higher eukaryotes, and some protein-coding genes are transcribed by RNAP I. The bidirectional RNAP II-mediated transcription initiation regions separating the long polycistronic clusters of protein-coding genes in trypanosomatids may represent ancestral, less sequence-specific, promoters mostly replaced in other eukaryotes by the archetypal TATA-containing promoters. Unlike most other organisms where transcriptional mechanisms plays a major role in regulation of mRNA levels, control of mRNA abundance in trypanosomes occurs mainly at the steps of RNA processing, stability and degradation. This reliance on post-transcriptional regulation of gene expression may explain the relative dearth of transcription factors and over-representation of RNA-binding proteins in the trypanosome genome. Introduction In all living organisms the genetic information encoded within the DNA genome must be transcribed into the RNA molecules that either act directly, or are translated into proteins, to carry out the myriad processes involved in cellular maintenance and growth. RNA polymerases are multisubunit protein complexes that are recruited to specific sites (promoters) within the genome by general transcription factors that are specific for each polymerase. In most eukaryotes, this process is differentially regulated according to developmental or proliferation state by modification of chromatin, as well as recruitment of specific transcription factors and mediator complexes. This leads to initiation of the tran-

[1]  Tu N. Nguyen,et al.  Purification of an eight subunit RNA polymerase I complex in Trypanosoma brucei. , 2006, Molecular and biochemical parasitology.

[2]  L. Vanhamme,et al.  Characterization of RNA polymerase II subunits of Trypanosoma brucei. , 2006, Molecular and biochemical parasitology.

[3]  Jennifer B Palenchar,et al.  Gene transcription in trypanosomes. , 2006, Molecular and biochemical parasitology.

[4]  M. Caimano,et al.  A TFIIB-like protein is indispensable for spliced leader RNA gene transcription in Trypanosoma brucei , 2006, Nucleic Acids Research.

[5]  Wenzhe Liu,et al.  A Divergent Transcription Factor TFIIB in Trypanosomes Is Required for RNA Polymerase II-Dependent Spliced Leader RNA Transcription and Cell Viability , 2006, Eukaryotic Cell.

[6]  Tu N. Nguyen,et al.  Highly Efficient Tandem Affinity Purification of Trypanosome Protein Complexes Based on a Novel Epitope Combination , 2005, Eukaryotic Cell.

[7]  S. Kelly,et al.  An in silico analysis of trypanosomatid RNA polymerases: insights into their unusual transcription. , 2005, Biochemical Society transactions.

[8]  M. Parsons,et al.  Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi , 2005, BMC Genomics.

[9]  Tu N. Nguyen,et al.  Characterization of a Multisubunit Transcription Factor Complex Essential for Spliced-Leader RNA Gene Transcription in Trypanosoma brucei , 2005, Molecular and Cellular Biology.

[10]  G. Cross,et al.  Trypanosomal TBP Functions with the Multisubunit Transcription Factor tSNAP To Direct Spliced-Leader RNA Gene Expression , 2005, Molecular and Cellular Biology.

[11]  Daniel Nilsson,et al.  Comparative Genomics of Trypanosomatid Parasitic Protozoa , 2005, Science.

[12]  David M. A. Martin,et al.  The Genome of the African Trypanosome Trypanosoma brucei , 2005, Science.

[13]  Heather J Munden,et al.  The Genome of the Kinetoplastid Parasite, Leishmania major , 2005, Science.

[14]  Anton Meinhart,et al.  A structural perspective of CTD function. , 2005, Genes & development.

[15]  E. Geiduschek,et al.  Archaeal transcription and its regulators , 2005, Molecular microbiology.

[16]  D. Baulcombe,et al.  RNA Polymerase IV Directs Silencing of Endogenous DNA , 2005, Science.

[17]  Chi V Dang,et al.  Multifaceted roles of glycolytic enzymes. , 2005, Trends in biochemical sciences.

[18]  L. Vanhamme,et al.  Characterization of subunits of the RNA polymerase I complex in Trypanosoma brucei. , 2005, Molecular and biochemical parasitology.

[19]  J. Russell,et al.  RNA-polymerase-I-directed rDNA transcription, life and works. , 2005, Trends in biochemical sciences.

[20]  J. Hoheisel,et al.  The transcriptomes of Trypanosoma brucei Lister 427 and TREU927 bloodstream and procyclic trypomastigotes. , 2005, Molecular and biochemical parasitology.

[21]  E. Ullu,et al.  Functional Characterization of a Trypanosoma brucei TATA-Binding Protein-Related Factor Points to a Universal Regulator of Transcription in Trypanosomes , 2004, Molecular and Cellular Biology.

[22]  V. Bellofatto,et al.  Genetic regulation of protein synthesis in trypanosomes. , 2004, Current molecular medicine.

[23]  S. Beverley,et al.  The application of gene expression microarray technology to kinetoplastid research. , 2004, Current molecular medicine.

[24]  J. Stiller,et al.  Comparative genomics of cyclin-dependent kinases suggest co-evolution of the RNAP II C-terminal domain and CTD-directed CDKs , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference, 2004. CSB 2004..

[25]  H. Stunnenberg,et al.  Cleavage and proteasome‐mediated degradation of the basal transcription factor TFIIA , 2004, The EMBO journal.

[26]  G. Olsen,et al.  Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia. , 2004, Genome research.

[27]  G. Stormo,et al.  Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. , 2004, Molecular and biochemical parasitology.

[28]  A. Cayota,et al.  Proteome analysis of the causative agent of Chagas disease: Trypanosoma cruzi. , 2004, International journal for parasitology.

[29]  D. Bentley,et al.  The link between mRNA processing and transcription: communication works both ways. , 2004, Experimental cell research.

[30]  P. Myler,et al.  Transcription Initiation and Termination on Leishmania major Chromosome 3 , 2004, Eukaryotic Cell.

[31]  W. Stumph,et al.  Architectural Arrangement of Cloned Proximal Sequence Element-Binding Protein Subunits on Drosophila U1 and U6 snRNA Gene Promoters , 2004, Molecular and Cellular Biology.

[32]  Hua Luo,et al.  In vivo transcription analysis utilizing chromatin immunoprecipation reveals a role for trypanosome transcription factor PBP-1 in RNA polymerase III-dependent transcription. , 2004, Molecular and biochemical parasitology.

[33]  A. Günzl,et al.  The Trypanosoma brucei spliced leader RNA and rRNA gene promoters have interchangeable TbSNAP50-binding elements. , 2004, Nucleic acids research.

[34]  A. Shilatifard,et al.  The RNA polymerase II elongation complex. , 2003, Annual review of biochemistry.

[35]  J. T. Kadonaga,et al.  The RNA polymerase II core promoter. , 2003, Annual review of biochemistry.

[36]  E. Krause,et al.  Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani , 2003, Proteomics.

[37]  G. Orphanides,et al.  FACT Facilitates Transcription-Dependent Nucleosome Alteration , 2003, Science.

[38]  P. Myler,et al.  Sense and antisense transcripts in the histone H1 (HIS-1) locus of Leishmania major. , 2003, International journal for parasitology.

[39]  P. Brick,et al.  Structural and functional homology between the RNAP(I) subunits A14/A43 and the archaeal RNAP subunits E/F. , 2003, Nucleic acids research.

[40]  R. Roeder,et al.  S Phase Activation of the Histone H2B Promoter by OCA-S, a Coactivator Complex that Contains GAPDH as a Key Component , 2003, Cell.

[41]  Reza Salavati,et al.  Leishmania major chromosome 3 contains two long convergent polycistronic gene clusters separated by a tRNA gene. , 2003, Nucleic acids research.

[42]  P. Myler,et al.  Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarray analysis. , 2003, Molecular and biochemical parasitology.

[43]  M. G. Lee,et al.  RNA Polymerase I Transcribes Procyclin Genes and Variant Surface Glycoprotein Gene Expression Sites in Trypanosoma brucei , 2003, Eukaryotic Cell.

[44]  Kenneth Stuart,et al.  Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region. , 2003, Molecular cell.

[45]  Richard J. Marhöfer,et al.  The second largest subunit of Trypanosoma brucei's multifunctional RNA polymerase I has a unique N-terminal extension domain. , 2003, Molecular and biochemical parasitology.

[46]  Michael L. Ginger,et al.  Ex Vivo and In Vitro Identification of a Consensus Promoter for VSG Genes Expressed by Metacyclic-Stage Trypanosomes in the Tsetse Fly , 2002, Eukaryotic Cell.

[47]  N. Hernandez,et al.  Redundant Cooperative Interactions for Assembly of a Human U6 Transcription Initiation Complex , 2002, Molecular and Cellular Biology.

[48]  K. Neugebauer,et al.  On the importance of being co-transcriptional , 2002, Journal of Cell Science.

[49]  P. Bastien,et al.  The switch region on Leishmania major chromosome 1 is not required for mitotic stability or gene expression, but appears to be essential. , 2002, Nucleic acids research.

[50]  J. Hoheisel,et al.  Analysis of stage-specific gene expression in the bloodstream and the procyclic form of Trypanosoma brucei using a genomic DNA-microarray. , 2002, Molecular and biochemical parasitology.

[51]  C. Clayton,et al.  Life without transcriptional control? From fly to man and back again , 2002, The EMBO journal.

[52]  J. Vandenhaute,et al.  Rpa12p, a conserved RNA polymerase I subunit with two functional domains , 2002, Molecular microbiology.

[53]  Patrick Cramer,et al.  Multisubunit RNA polymerases. , 2002, Current opinion in structural biology.

[54]  Keith Gull,et al.  A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei , 2001, Nature.

[55]  Qiang Zhou,et al.  The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription , 2001, Nature.

[56]  A. Djikeng,et al.  RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-26-nucleotide RNAs. , 2001, RNA.

[57]  B. Barrell,et al.  Secondary DNA structure analysis of the coding strand switch regions of five Leishmania major Friedlin chromosomes , 2001, Current Genetics.

[58]  D. Horn,et al.  Nuclear gene transcription and chromatin in Trypanosoma brucei. , 2001, International journal for parasitology.

[59]  N. Hernandez,et al.  Small Nuclear RNA Genes: a Model System to Study Fundamental Mechanisms of Transcription* , 2001, The Journal of Biological Chemistry.

[60]  Ying Huang,et al.  Comparison of the RNA polymerase III transcription machinery in Schizosaccharomyces pombe, Saccharomyces cerevisiae and human. , 2001, Nucleic acids research.

[61]  P. Carbon,et al.  An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. , 2001, Nucleic acids research.

[62]  R. Conaway,et al.  Mechanism of transcription initiation and promoter escape by RNA polymerase II. , 2001, Current opinion in genetics & development.

[63]  V. Bellofatto,et al.  Trypanosome spliced leader RNA genes contain the first identified RNA polymerase II gene promoter in these organisms. , 2001, Nucleic acids research.

[64]  G Laufer,et al.  In-vitro competition analysis of procyclin gene and variant surface glycoprotein gene expression site transcription in Trypanosoma brucei. , 2001, Molecular and biochemical parasitology.

[65]  T. Nash,et al.  Initiator and upstream elements in the α2-tubulin promoter of Giardia lamblia , 2001 .

[66]  N. Hernandez,et al.  A positioned nucleosome on the human U6 promoter allows recruitment of SNAPc by the Oct-1 POU domain. , 2001, Molecular cell.

[67]  A. Djikeng,et al.  Characterization of a candidate Trypanosoma brucei U1 small nuclear RNA gene. , 2001, Molecular and biochemical parasitology.

[68]  S. Baserga,et al.  The genes for small nucleolar RNAs in Trypanosoma brucei are organized in clusters and are transcribed as a polycistronic RNA. , 2000, Nucleic acids research.

[69]  P. Myler,et al.  The unusual gene organization of Leishmania major chromosome 1 may reflect novel transcription processes. , 2000, Nucleic acids research.

[70]  L. Johnson,et al.  Transcriptional control elements of the rat thymidylate synthase promoter: evolutionary conservation of regulatory features. , 2000, Experimental cell research.

[71]  E. Geiduschek,et al.  Engines of gene expression , 2000, Nature Structural Biology.

[72]  L. Vanhamme,et al.  Differential RNA elongation controls the variant surface glycoprotein gene expression sites of Trypanosoma brucei , 2000, Molecular microbiology.

[73]  L. Johnson,et al.  Transcriptional control elements and complex initiation pattern of the TATA‐less bidirectional human thymidylate synthase promoter , 2000, Journal of cellular biochemistry.

[74]  D. Campbell,et al.  Transcription of the kinetoplastid spliced leader RNA gene. , 2000, Parasitology today.

[75]  Hua Luo,et al.  Transcription Initiation at the TATA-less Spliced Leader RNA Gene Promoter Requires at Least Two DNA-binding Proteins and a Tripartite Architecture That Includes an Initiator Element* , 1999, The Journal of Biological Chemistry.

[76]  J. Donelson,et al.  Search for promoters for the GARP and rRNA genes of Trypanosoma congolense. , 1999, Molecular and biochemical parasitology.

[77]  P. Myler,et al.  The Leishmania donovani LD1 locus gene ORFG encodes a biopterin transporter (BT1). , 1999, Molecular and biochemical parasitology (Print).

[78]  P. Myler,et al.  Characterization of the Leishmania donovani ribosomal RNA promoter. , 1999, Molecular and biochemical parasitology.

[79]  P. Borst,et al.  Control of variant surface glycoprotein gene‐expression sites in Trypanosoma brucei , 1999, The EMBO journal.

[80]  A. Günzl,et al.  In Vitro Analysis of α-Amanitin-Resistant Transcription from the rRNA, Procyclic Acidic Repetitive Protein, and Variant Surface Glycoprotein Gene Promoters inTrypanosoma brucei , 1999, Molecular and Cellular Biology.

[81]  S. Melville,et al.  Transcription of 'inactive' expression sites in African trypanosomes leads to expression of multiple transferrin receptor RNAs in bloodstream forms. , 1999, Molecular and biochemical parasitology.

[82]  J. Donelson,et al.  The Anatomy and Transcription of a Monocistronic Expression Site for a Metacyclic Variant Surface Glycoprotein Gene inTrypanosoma brucei * , 1999, The Journal of Biological Chemistry.

[83]  G. Cross,et al.  Trypanosoma brucei variant surface glycoprotein regulation involves coupled activation/inactivation and chromatin remodeling of expression sites , 1999, The EMBO journal.

[84]  S. Sunkin,et al.  Leishmania major Friedlin chromosome 1 has an unusual distribution of protein-coding genes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[85]  D. Reinberg,et al.  The General Transcription Factors IIA, IIB, IIF, and IIE Are Required for RNA Polymerase II Transcription from the Human U1 Small Nuclear RNA Promoter , 1999, Molecular and Cellular Biology.

[86]  K. Gull,et al.  Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[87]  P. Borst,et al.  Subnuclear localization of the active variant surface glycoprotein gene expression site in Trypanosoma brucei. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[88]  T. G. Roberts,et al.  Single nucleotide resolution of promoter activity and protein binding for the Leishmania tarentolae spliced leader RNA gene. , 1998, Molecular and biochemical parasitology.

[89]  G. Cross,et al.  In situ analysis of a variant surface glycoprotein expression-site promoter region in Trypanosoma brucei. , 1998, Molecular and biochemical parasitology.

[90]  Ishihama Akira,et al.  Subunits of yeast RNA polymerases: structure and function. , 1998 .

[91]  C. Clayton,et al.  PARP gene expression: control at many levels. , 1998, Molecular and biochemical parasitology.

[92]  R. Kobayashi,et al.  The Large Subunit of Basal Transcription Factor SNAPc Is a Myb Domain Protein That Interacts with Oct-1 , 1998, Molecular and Cellular Biology.

[93]  Hua Luo,et al.  Characterization of Two Protein Activities That Interact at the Promoter of the Trypanosomatid Spliced Leader RNA* , 1997, The Journal of Biological Chemistry.

[94]  D. Tollervey,et al.  Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis , 1997, Molecular and cellular biology.

[95]  S. Michaeli,et al.  The trypanosomatid Leptomonas collosoma 7SL RNA gene. Analysis of elements controlling its expression. , 1997, Nucleic acids research.

[96]  P. He,et al.  In vitro transcription of the Leptomonas seymouri SL RNA and U2 snRNA genes using homologous cell extracts. , 1997, Molecular and biochemical parasitology.

[97]  P. Rothman,et al.  Binding of trans-acting factors to the double-stranded variant surface glycoprotein (VSG) expression site promoter of Trypanosoma brucei. , 1997, Molecular and biochemical parasitology.

[98]  J. Donelson,et al.  Co-duplication of a Variant Surface Glycoprotein Gene and Its Promoter to an Expression Site in African Trypanosomes* , 1997, The Journal of Biological Chemistry.

[99]  E. Ullu,et al.  Structure of the Trypanosoma brucei U6 snRNA gene promoter. , 1997, Molecular and biochemical parasitology.

[100]  E. Ullu,et al.  Transcription of the Trypanosoma brucei spliced leader RNA gene is dependent only on the presence of upstream regulatory elements. , 1997, Molecular and biochemical parasitology.

[101]  T. G. Roberts,et al.  The SLA RNA gene of Trypanosoma brucei is organized in a tandem array which encodes several small RNAs. , 1996, Molecular and biochemical parasitology.

[102]  R. Kobayashi,et al.  Cloning and characterization of SNAP50, a subunit of the snRNA‐activating protein complex SNAPc. , 1996, The EMBO journal.

[103]  T Lagrange,et al.  The general transcription factors of RNA polymerase II. , 1996, Genes & development.

[104]  J. Svejstrup,et al.  The multiple roles of transcription/repair factor TFIIH. , 1996, Trends in biochemical sciences.

[105]  E. Green,et al.  Gene encoding human Ro-associated autoantigen Y5 RNA. , 1996, Nucleic acids research.

[106]  R. Conaway,et al.  The RNA polymerase II general elongation factors. , 1996, Trends in biochemical sciences.

[107]  D. Lalo,et al.  RRN11 Encodes the Third Subunit of the Complex Containing Rrn6p and Rrn7p That Is Essential for the Initiation of rDNA Transcription by Yeast RNA Polymerase I* , 1996, The Journal of Biological Chemistry.

[108]  P. Sigler,et al.  Crystal Structure of the Yeast TFIIA/TBP/DNA Complex , 1996, Science.

[109]  T. Richmond,et al.  Crystal structure of a yeast TFIIA/TBP/DNA complex , 1996, Nature.

[110]  J. Donelson,et al.  The promoter for the ribosomal RNA genes of Leishmania chagasi. , 1996, Molecular and biochemical parasitology.

[111]  Y. Nogi,et al.  Multiprotein transcription factor UAF interacts with the upstream element of the yeast RNA polymerase I promoter and forms a stable preinitiation complex. , 1996, Genes & development.

[112]  S. Lips,et al.  Characterization of a transcription terminator of the procyclin PARP A unit of Trypanosoma brucei , 1996, Molecular and cellular biology.

[113]  T. Gibson,et al.  The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. , 1996, Trends in biochemical sciences.

[114]  M. Lee An RNA polymerase II promoter in the hsp70 locus of Trypanosoma brucei , 1996, Molecular and cellular biology.

[115]  S. R. Uliana,et al.  Structural and functional characterization of the Leishmania amazonensis ribosomal RNA promoter. , 1996, Molecular and biochemical parasitology.

[116]  P. Myler,et al.  Increased expression of LD1 genes transcribed by RNA polymerase I in Leishmania donovani as a result of duplication into the rRNA gene locus , 1995, Molecular and cellular biology.

[117]  L. Vanhamme,et al.  Specific binding of proteins to the noncoding strand of a crucial element of the variant surface glycoprotein, procyclin, and ribosomal promoters of trypanosoma brucei , 1995, Molecular and cellular biology.

[118]  E. Ullu,et al.  Accurate Transcription of the Trypanosoma brucei U2 Small Nuclear RNA Gene in a Homologous Extract (*) , 1995, The Journal of Biological Chemistry.

[119]  P. Thuriaux,et al.  Transcription in archaea: similarity to that in eucarya. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[120]  E. Ullu,et al.  An unusual liaison: Small nuclear and cytoplasmis RNA genes team up with tRNA genes in trypanosomatid protozoa , 1995 .

[121]  R. Kobayashi,et al.  A TBP–TAF complex required for transcription of human snRNA genes by RNA polymerases II and III , 1995, Nature.

[122]  V. Bellofatto,et al.  Essential components of the mini-exon gene promoter in the trypanosomatid Leptomonas seymouri. , 1995, Molecular and biochemical parasitology.

[123]  Z. Wang,et al.  Proximal sequence element-binding transcription factor (PTF) is a multisubunit complex required for transcription of both RNA polymerase II- and RNA polymerase III-dependent small nuclear RNA genes , 1995, Molecular and cellular biology.

[124]  J. Ranish,et al.  Analysis of the yeast transcription factor TFIIA: distinct functional regions and a polymerase II-specific role in basal and activated transcription , 1995, Molecular and cellular biology.

[125]  D. Wirth,et al.  Identification of a cis-acting gene regulatory element from the lemdr1 locus of Leishmania enriettii. , 1994, The Journal of biological chemistry.

[126]  E. Ullu,et al.  Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes , 1994, Molecular and cellular biology.

[127]  C. Clayton,et al.  Gene expression mediated by bacteriophage T3 and T7 RNA polymerases in transgenic trypanosomes. , 1994, Nucleic acids research.

[128]  C. Clayton,et al.  The PARP and rRNA promoters of Trypanosoma brucei are composed of dissimilar sequence elements that are functionally interchangeable , 1994, Molecular and cellular biology.

[129]  C. Tschudi,et al.  RNA polymerase III-mediated transcription of the trypanosome U2 small nuclear RNA gene is controlled by both intragenic and extragenic regulatory elements , 1994, Molecular and cellular biology.

[130]  N. Agabian,et al.  Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats. , 1994, The Journal of biological chemistry.

[131]  J. Barry,et al.  Trypanosoma brucei: unusual expression-site-associated gene homologies in a metacyclic VSG gene expression site. , 1993, Experimental parasitology.

[132]  I. Willis RNA polymerase III. Genes, factors and transcriptional specificity. , 1993, European journal of biochemistry.

[133]  P. Rigby Three in one and one in three: It all depends on TBP , 1993, Cell.

[134]  R. Planta,et al.  A system to study transcription by yeast RNA polymerase I within the chromosomal context: functional analysis of the ribosomal DNA enhancer and the RBP1/REB1 binding sites. , 1992, The EMBO journal.

[135]  Ploeg,et al.  The promoter for the procyclic acidic repetitive protein (PARP) genes of Trypanosoma brucei shares features with RNA polymerase I promoters , 1992, Molecular and cellular biology.

[136]  Kevin Struhl,et al.  The TATA-binding protein is required for transcription by all three nuclear RNA polymerases in yeast cells , 1992, Cell.

[137]  J. Ranish,et al.  Isolation of two genes that encode subunits of the yeast transcription factor IIA. , 1992, Science.

[138]  R. Reeder,et al.  In vitro definition of the yeast RNA polymerase I promoter. , 1992, Nucleic acids research.

[139]  E. Pays,et al.  The actin gene promoter of Trypanosoma brucei. , 1991, Nucleic acids research.

[140]  C. Clayton,et al.  Anatomy of the parp gene promoter of Trypanosoma brucei. , 1991, The EMBO journal.

[141]  R. Planta,et al.  The yeast RNA polymerase I promoter: ribosomal DNA sequences involved in transcription initiation and complex formation in vitro. , 1991, Nucleic acids research.

[142]  P. Borst,et al.  Alpha-amanitin-resistant transcription units in trypanosomes: a comparison of promoter sequences for a VSG gene expression site and for the ribosomal RNA genes. , 1991, Nucleic acids research.

[143]  R. Young,et al.  Yeast RNA polymerase II subunit RPB9 is essential for growth at temperature extremes. , 1991, The Journal of biological chemistry.

[144]  S. Bell,et al.  tRNAs of Trypanosoma brucei. Unusual gene organization and mitochondrial importation. , 1991, The Journal of biological chemistry.

[145]  P. Borst,et al.  Antigenic variation in Trypanosoma brucei: a telomeric expression site for variant-specific surface glycoprotein genes with novel features. , 1991, Nucleic acids research.

[146]  M. Fried,et al.  The bidirectional promoter of the divergently transcribed mouse Surf-1 and Surf-2 genes. , 1991, Molecular and cellular biology.

[147]  S. Beverley,et al.  Nuclease mapping and DNA sequence analysis of transcripts from the dihydrofolate reductase-thymidylate synthase (R) region of Leishmania major. , 1990, Nucleic acids research.

[148]  D. Sherman,et al.  Using transfection to study gene expression in trypanosomes. , 1990, Biochemical Society transactions.

[149]  P. Tebabi,et al.  Trypanosoma brucei: constitutive activity of the VSG and procyclin gene promoters. , 1990, The EMBO journal.

[150]  M. Ouellette,et al.  The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei. , 1990, The EMBO journal.

[151]  G. Rudenko,et al.  Procyclic acidic repetitive protein (PARP) genes located in an unusually small alpha-amanitin-resistant transcription unit: PARP promoter activity assayed by transient DNA transfection of Trypanosoma brucei , 1990, Molecular and cellular biology.

[152]  D. Sherman,et al.  Transcription of the procyclic acidic repetitive protein genes of Trypanosoma brucei , 1990, Molecular and cellular biology.

[153]  P. Chambon,et al.  Sequencing and expression of complementary DNA for the general transcription factor BTF3 , 1990, Nature.

[154]  R. Burgess,et al.  Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. , 1990, The Journal of biological chemistry.

[155]  R. Planta,et al.  Linker scanning of the yeast RNA polymerase I promoter. , 1989, Nucleic acids research.

[156]  D. Wirth,et al.  Transfection of Leishmania enriettii and expression of chloramphenicol acetyltransferase gene. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[157]  G. Rudenko,et al.  Alpha‐amanitin resistant transcription of protein coding genes in insect and bloodstream form Trypanosoma brucei. , 1989, The EMBO journal.

[158]  A. Cornelissen,et al.  Characterization of the RNA polymerases of Trypanosoma brucei: trypanosomal mRNAs are composed of transcripts derived from both RNA polymerase II and III. , 1989, The EMBO journal.

[159]  P. Tebabi,et al.  Trypanosoma brucei: enrichment by UV of intergenic transcripts from the variable surface glycoprotein gene expression site , 1989, Molecular and cellular biology.

[160]  G. Cross,et al.  Expression of a bacterial gene in a trypanosomatid protozoan. , 1989, Science.

[161]  D. Salmon,et al.  The genes and transcripts of an antigen gene expression site from T. brucei , 1989, Cell.

[162]  C. Ingles,et al.  In trypanosomes the homolog of the largest subunit of RNA polymerase II is encoded by two genes and has a highly unusual C-terminal domain structure , 1989, Cell.

[163]  P. Borst,et al.  The anatomy and transcription of a telomeric expression site for variant-specific surface antigens in T. brucei , 1987, Cell.

[164]  R. Roeder,et al.  The 5S gene internal control region is composed of three distinct sequence elements, organized as two functional domains with variable spacing , 1987, Cell.

[165]  J. S. Cordingley Nucleotide sequence of the 5S ribosomal RNA gene repeat of Trypanosoma brucei. , 1985, Molecular and biochemical parasitology.

[166]  P. Borst,et al.  Alpha-amanitin-insensitive transcription of variant surface glycoprotein genes provides further evidence for discontinuous transcription in trypanosomes. , 1984, Nucleic acids research.

[167]  K. P. Watkins,et al.  Trypanosome mRNAs share a common 5′ spliced leader sequence , 1984, Cell.

[168]  M. Birnstiel,et al.  Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements , 1981, Nature.

[169]  Patrick Cramer,et al.  Structure and function of RNA polymerase II. , 2004, Advances in protein chemistry.

[170]  R. Young,et al.  Transcription of eukaryotic protein-coding genes. , 2000, Annual review of genetics.

[171]  A. Shilatifard,et al.  The RNA polymerase II general elongation complex. , 1998, Biological chemistry.

[172]  G. Orphanides,et al.  The RNA polymerase II general transcription factors: past, present, and future. , 1998, Cold Spring Harbor symposia on quantitative biology.

[173]  M G Lee,et al.  Transcription of protein-coding genes in trypanosomes by RNA polymerase I. , 1997, Annual review of microbiology.

[174]  J. M. Requena,et al.  A region containing repeated elements is associated with transcriptional termination of Leishmania infantum ribosomal RNA genes. , 1997, Molecular and biochemical parasitology.

[175]  J. Barry,et al.  A promotor directing alpha-amanitin-sensitive transcription of GARP, the major surface antigen of insect stage Trypanosoma congolense. , 1996, Nucleic acids research.

[176]  K. Gottesdiener,et al.  A detailed mutational analysis of the VSG gene expression site promoter. , 1996, Molecular and biochemical parasitology.

[177]  P. Chambon,et al.  Structural and functional studies on mammalian nuclear DNA-dependent RNA polymerases. , 1973, Basic life sciences.