A new multi-objective optimization algorithm based on differential evolution and neighborhood exploring evolution strategy

In this paper a new optimization algorithm based on Differential Evolution, non-dominated sorting strategy and neighborhood exploration strategy for guaranteeing convergence and diversity through the generation of neighborhoods of different sizes to potential candidates in the population is presented. The performance of the algorithm proposed is validated by using standard test functions and metrics commonly adopted in the specialized literature. The sensitivity analysis of some relevant parameters of the algorithm is performed and compared with the classical DE algorithm without the strategy of neighborhood exploration and with other state-of-the-art evolutionary algorithms.

[1]  Gian Piero Zarri,et al.  Representation and Management of Narrative Information - Theoretical Principles and Implementation , 2008, Advanced Information and Knowledge Processing.

[2]  Dominique Verpoorten,et al.  The eight learning events model: A pedagogic conceptual tool supporting diversification of learning methods , 2007, Interact. Learn. Environ..

[3]  Christian Wolf,et al.  iWeaver: Towards 'Learning Style'-based e-Learning in Computer Science Education , 2003, ACE.

[4]  Richard A. Bolt,et al.  “Put-that-there”: Voice and gesture at the graphics interface , 1980, SIGGRAPH '80.

[5]  Robert Loo,et al.  Kolb’s learning styles and learning preferences: Is there a linkage? , 2004 .

[6]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[7]  B. Malle How the Mind Explains Behavior: Folk Explanations, Meaning, and Social Interaction , 2004 .

[8]  Susan Bull,et al.  Designing learner-controlled educational interactions based on learning/cognitive style and learner behaviour , 2006, Interact. Comput..

[9]  F. S. Lobato,et al.  A Comparative Study of Gibbs Free Energy Minimization in a Real System Using Heuristic Methods , 2009 .

[10]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[11]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[12]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[13]  S. Jagannathan,et al.  Optimal control of affine nonlinear continuous-time systems using an online Hamilton-Jacobi-Isaacs formulation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[14]  Antônio José da Silva Neto,et al.  A comparative study of the application of differential evolution and simulated annealing in radiative transfer problems , 2010 .

[15]  Marcus Johnson,et al.  Nonlinear two-player zero-sum game approximate solution using a Policy Iteration algorithm , 2011, IEEE Conference on Decision and Control and European Control Conference.

[16]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[17]  Dimitris K. Tasoulis,et al.  Vector evaluated differential evolution for multiobjective optimization , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[18]  B. V. Babu,et al.  Non-dominated Sorting Differential Evolution (NSDE): An Extension of Differential Evolution for Multi-objective Optimization , 2005, IICAI.

[19]  Leandro dos Santos Coelho,et al.  Apparent thermal diffusivity estimation of the banana during drying using inverse method , 2008 .

[20]  Ibramsha Yahya Willcoxson and Prosser's factor analyses on Kolb's (1985) LSI data: reflections and re-analyses , 1998 .

[21]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[22]  H. Abbass The self-adaptive Pareto differential evolution algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[23]  M. A. Styblinski,et al.  Fuzzy cognitive maps, signal flow graphs, and qualitative circuit analysis , 1988, IEEE 1988 International Conference on Neural Networks.

[24]  Kun Chang Lee,et al.  Fuzzy cognitive map approach to web-mining inference amplification , 2002, Expert Syst. Appl..

[25]  Christos Goumopoulos,et al.  A Service Oriented Architecture Combining Agents and Ontologies Towards Pervasive Adaptation , 2009, Intelligent Environments.

[26]  Robert E. Stake,et al.  Learning parameters, aptitudes, and achievements , 1961 .

[27]  Leo Obrst,et al.  Ontologies for semantically interoperable systems , 2003, CIKM '03.

[28]  Andrea Omicini,et al.  Environment as a first class abstraction in multiagent systems , 2007, Autonomous Agents and Multi-Agent Systems.

[29]  Frank L. Lewis,et al.  Neural Network Control Of Robot Manipulators And Non-Linear Systems , 1998 .

[30]  Francis Guerin,et al.  Specifying agent communication languages , 2002 .

[31]  B. V. Babu,et al.  Multiobjective differential evolution (MODE) for optimization of adiabatic styrene reactor , 2005 .

[32]  Marcus Johnson,et al.  A model-free robust policy iteration algorithm for optimal control of nonlinear systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[33]  Frank L. Lewis,et al.  Online learning algorithm for zero-sum games with integral reinforcement learning , 2011 .

[34]  Sheng-Jun Li,et al.  Fuzzy cognitive map learning based on improved nonlinear Hebbian rule , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[35]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[36]  Erik Blasch,et al.  Issues and Challenges in Situation Assessment (Level 2 Fusion) , 2006, J. Adv. Inf. Fusion.

[37]  R. Loo,et al.  Confirmatory Factor Analyses of the Full and Short Versions of the Marlowe-Crowne Social Desirability Scale , 2000, The Journal of social psychology.

[38]  Ingoo Han,et al.  Fuzzy cognitive map for the design of EDI controls , 2000, Inf. Manag..

[39]  Munindar P. Singh A Social Semantics for Agent Communication Languages , 2000, Issues in Agent Communication.

[40]  Gopal Sakarkar,et al.  A Survey of Software Agent and Ontology , 2010 .

[41]  Steffen Staab,et al.  APIs à gogo: Automatic Generation of Ontology APIs , 2009, 2009 IEEE International Conference on Semantic Computing.

[42]  Zhi-Qiang Liu Causation , Bayesian Networks , and Cognitive Maps ∗ , 2005 .

[43]  Carlos A. Coello Coello,et al.  A new multi-objective evolutionary algorithm: neighbourhood exploring evolution strategy , 2005 .

[44]  N. Madavan Multiobjective optimization using a Pareto differential evolution approach , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[45]  Rj Allan,et al.  Survey of Agent Based Modelling and Simulation Tools , 2009 .

[46]  Feng-Sheng Wang,et al.  Hybrid Differential Evolution for Problems of Kinetic Parameter Estimation and Dynamic Optimization of an Ethanol Fermentation Process , 2001 .

[47]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[48]  Mohamed Tahar Kimour,et al.  Multi-view Metamodeling of Software Architecture Behavior , 2009, J. Softw..

[49]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[50]  Michael J. North,et al.  Tutorial on Agent-Based Modeling and Simulation PART 2: How to Model with Agents , 2006, Proceedings of the 2006 Winter Simulation Conference.

[51]  Michael Prosser,et al.  Kolb\'s Learning Style Inventory (1985): review and further study of validity and reliability , 1996 .

[52]  Tim J. Brailsford,et al.  Personally tailored teaching in WHURLE using conditional transclusion , 2001, Hypertext.

[53]  Kweku-Muata Osei-Bryson,et al.  Generating consistent subjective estimates of the magnitudes of causal relationships in fuzzy cognitive maps , 2004, Comput. Oper. Res..

[54]  B. Akkoyunlu,et al.  Kolb learning style inventory , 1993 .

[55]  Pipatsarun Phobun,et al.  Adaptive intelligent tutoring systems for e-learning systems , 2010 .

[56]  Munindar P. Singh Agent Communication Languages: Rethinking the Principles , 2003, Communication in Multiagent Systems.

[57]  Marcus Specht,et al.  ACE - Adaptive Courseware Environment , 2000, AH.

[58]  D. Kleinman On an iterative technique for Riccati equation computations , 1968 .