Nonsphericity of the Moon and Near Sun-Synchronous Polar Lunar Orbits

Herein, we consider the problem of a lunar artificial satellite perturbed by the nonuniform distribution of mass of the Moon taking into account the oblateness () and the equatorial ellipticity (sectorial term ). Using Lie-Hori method up to the second order short-period terms of the Hamiltonian are eliminated. A study is done for the critical inclination in first and second order of the disturbing potential. Coupling terms due to the nonuniform distribution of mass of the Moon are analyzed. Numerical simulations are presented with the disturbing potential of first and second order is. It an approach for the behavior of the longitude of the ascending node of a near Sun-synchronous polar lunar orbit is presented.

[1]  Bertachini de Almeida Prado,et al.  ORBITAL EVOLUTION OF A SATELLITE PERTURBED BY A THIRD-BODY , 2000 .

[2]  Andrea Milani,et al.  Orbit maintenance of a lunar polar orbiter , 1998 .

[3]  S. D. Fernandes Notes on Hori Method for Non-Canonical Systems , 2003 .

[4]  R. C. Domingos,et al.  Third-Body Perturbation in the Case of Elliptic Orbits for the Disturbing Body , 2008 .

[5]  C. Ulivieri,et al.  Long-term effects on lunar orbiter , 1997 .

[6]  R. Broucke Long-Term Third-Body Effects via Double Averaging , 2003 .

[7]  J. P. S. Carvalho,et al.  NON-SPHERICITY OF THE MOON AND CRITICAL INCLINATION , 2009 .

[8]  Antonio Elipe,et al.  Frozen Orbits About the Moon , 2003 .

[9]  J. Henrard,et al.  The combined effect of J2 and C22 on the critical inclination of a lunar orbiter , 2006 .

[10]  A. Prado Third-Body Perturbation in Orbits Around Natural Satellites , 2003 .

[11]  W. M. Kaula,et al.  Theory of Satellite Geodesy: Applications of Satellites to Geodesy , 2000 .

[12]  Orbit of a lunar artificial satellite: Analytical theory of perturbations , 2004, Proceedings of the International Astronomical Union.

[13]  B. D. Saedeleer Analytical theory of a lunar artificial satellite with third body perturbations , 2006 .

[14]  Gen-Ichiro Hori,et al.  Theory of general perturbations with unspecified canonical variables , 1966 .

[15]  Dirk Brouwer,et al.  SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .

[16]  A. Cayley Tables of the Developments of Functions in the Theory of Elliptic Motion , 1860 .

[17]  André Deprit,et al.  Canonical transformations depending on a small parameter , 1969 .

[18]  S. Breiter SECOND-ORDER SOLUTION FOR THE ZONAL PROBLEM OF SATELLITE THEORY , 1997 .

[19]  J. Junkins,et al.  Orbital mission analysis for a lunar mapping satellite , 1994 .

[20]  Sylvio Ferraz-Mello,et al.  Canonical Perturbation Theories: Degenerate Systems and Resonance , 2007 .

[21]  Prasun N. Desai,et al.  Lifetimes of Lunar Satellite Orbits , 1998 .

[22]  T. Felsentreger,et al.  A semi-analytic theory for the motion of a lunar satellite , 1970 .

[23]  M. Radwan Analytical Approach to the Motion of a Lunar Artificial Satellite , 2003 .