On Penalty and Gap Function Methods for Bilevel Equilibrium Problems

We consider bilevel pseudomonotone equilibrium problems. We use a penalty function to convert a bilevel problem into one-level ones. We generalize a pseudo--monotonicity concept from -monotonicity and prove that under pseudo--monotonicity property any stationary point of a regularized gap function is a solution of the penalized equilibrium problem. As an application, we discuss a special case that arises from the Tikhonov regularization method for pseudomonotone equilibrium problems.

[1]  A. Bakushinskii,et al.  Ill-Posed Problems: Theory and Applications , 1994 .

[2]  L. Muu,et al.  Convergence of an adaptive penalty scheme for finding constrained equilibria , 1992 .

[3]  L. D. Muu,et al.  Regularization Algorithms for Solving Monotone Ky Fan Inequalities with Application to a Nash-Cournot Equilibrium Model , 2009, J. Optimization Theory and Applications.

[4]  Panos M. Pardalos,et al.  Multilevel Optimization: Algorithms and Applications , 2012 .

[5]  Masao Fukushima,et al.  A New Merit Function and a Successive Quadratic Programming Algorithm for Variational Inequality Problems , 1996, SIAM J. Optim..

[6]  Vyacheslav V. Kalashnikov,et al.  Solving two-Level variational inequality , 1996, J. Glob. Optim..

[7]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[8]  Massimo Pappalardo,et al.  A new solution method for equilibrium problems , 2009, Optim. Methods Softw..

[9]  T. D. Quoc,et al.  Extragradient algorithms extended to equilibrium problems , 2008 .

[10]  Jean-Jacques Strodiot,et al.  A bundle method for solving equilibrium problems , 2009, Math. Program..

[11]  Le Dung Muu,et al.  A Global Optimization Method for Solving Convex Quadratic Bilevel Programming Problems , 2003, J. Glob. Optim..

[12]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[13]  Giandomenico Mastroeni,et al.  Gap Functions for Equilibrium Problems , 2003, J. Glob. Optim..

[14]  L. Muu,et al.  The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions , 2011 .

[15]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[16]  X. P. Ding,et al.  Auxiliary Principle and Algorithm for Mixed Equilibrium Problems and Bilevel Mixed Equilibrium Problems in Banach Spaces , 2010 .

[17]  Monica Bianchi,et al.  Generalized monotone bifunctions and equilibrium problems , 1996 .

[18]  Abdellatif Moudafi,et al.  Proximal methods for a class of bilevel monotone equilibrium problems , 2010, J. Glob. Optim..

[19]  Massimo Pappalardo,et al.  GAP FUNCTIONS FOR NONSMOOTH EQUILIBRIUM PROBLEMS , 2009 .

[20]  G. Cohen Auxiliary problem principle extended to variational inequalities , 1988 .

[21]  I. Konnov Combined Relaxation Methods for Variational Inequalities , 2000 .

[22]  A. Iusem,et al.  Iterative Algorithms for Equilibrium Problems , 2003 .

[23]  Le Dung Muu,et al.  An extragradient algorithm for solving bilevel pseudomonotone variational inequalities , 2012, J. Glob. Optim..

[24]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  A. Moudafi Proximal point algorithm extended to equilibrium problems , 1999 .