LIGHT CURVE TEMPLATES AND GALACTIC DISTRIBUTION OF RR LYRAE STARS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82

We present an improved analysis of halo substructure traced by RR Lyrae stars in the Sloan Digital Sky Survey (SDSS) stripe 82 region. With the addition of SDSS-II data, a revised selection method based on new ugriz light curve templates results in a sample of 483 RR Lyrae stars that is essentially free of contamination. The main result from our first study persists: the spatial distribution of halo stars at galactocentric distances 5-100 kpc is highly inhomogeneous. At least 20% of halo stars within 30 kpc from the Galactic center can be statistically associated with substructure. We present strong direct evidence, based on both RR Lyrae stars and main-sequence stars, that the halo stellar number density profile significantly steepens beyond a Galactocentric distance of ~30 kpc, and a larger fraction of the stars are associated with substructure. By using a novel method that simultaneously combines data for RR Lyrae and main-sequence stars, and using photometric metallicity estimates for main-sequence stars derived from deep co-added u-band data, we measure the metallicity of the Sagittarius dSph tidal stream (trailing arm) toward R.A. ~2h-3h and decl. ~ 0? to be 0.3 dex higher ([Fe/H] = ?1.2) than that of surrounding halo field stars. Together with a similar result for another major halo substructure, the Monoceros stream, these results support theoretical predictions that an early forming, smooth inner halo, is metal-poor compared to high surface brightness material that have been accreted onto a later-forming outer halo. The mean metallicity of stars in the outer halo that are not associated with detectable clumps may still be more metal-poor than the bulk of inner-halo stars, as has been argued from other data sets.

[1]  Lars Hernquist,et al.  Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern , 2005, astro-ph/0501398.

[2]  Mamoru Doi,et al.  The Milky Way Tomography with SDSS. II. Stellar Metallicity , 2008, 0804.3850.

[3]  Sergey E. Koposov,et al.  submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE HERCULES-AQUILA CLOUD , 2007 .

[4]  Ž. Ivezić,et al.  The Selection of RR Lyrae Stars Using Single-Epoch Data , 2003, astro-ph/0310565.

[5]  S. Prior,et al.  EXTENDING THE VIRGO STELLAR STREAM WITH SEKBO SURVEY RR LYRAE STARS , 2008, 0810.0057.

[6]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[7]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[8]  Building up the stellar halo of the Galaxy , 1999, astro-ph/9901102.

[9]  S. Majewski,et al.  A Two Micron All-Sky Survey View of the Sagittarius Dwarf Galaxy. IV. Modeling the Sagittarius Tidal Tails , 2004, astro-ph/0407566.

[10]  Michael J. West,et al.  The globular cluster system of the Galaxy. III: measurements of radial velocity and metallicity for 60 clusters and a compilation of metallicities for 121 clusters , 1984 .

[11]  C. Grillmair Detection of a New, 60 Degree-Long Dwarf Galaxy Debris Stream , 2006 .

[12]  J. Bullock,et al.  Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern , 2008 .

[13]  A. Layden RR Lyrae Variables in the Inner Halo. I. Photometry , 1998 .

[14]  University of Michigan,et al.  Analysis of RR Lyrae Stars in the Northern Sky Variability Survey , 2006, astro-ph/0606092.

[15]  Brant E. Robertson,et al.  Tracing Galaxy Formation with Stellar Halos. II. Relating Substructure in Phase and Abundance Space to Accretion Histories , 2008, 0807.3911.

[16]  J. McGraw,et al.  RR Lyrae Variable Star Distribution in the Galactic Halo , 1996 .

[17]  D. York,et al.  Identification of A-colored Stars and Structure in the Halo of the Milky Way from Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0004128.

[18]  Coryn A. L. Bailer-Jones,et al.  Two stellar components in the halo of the Milky Way , 2007, Nature.

[19]  S. Blažko,et al.  Mitteilungen über veränderliche Sterne , 1907 .

[20]  Zeljko Ivezic,et al.  The Accretion Origin of the Milky Way’s Stellar Halo , 2007, 0706.0004.

[21]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[22]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[23]  James E. Gunn,et al.  SDSS Imaging Pipelines , 2001, SPIE Astronomical Telescopes + Instrumentation.

[24]  V. Belokurov,et al.  Light and motion in SDSS Stripe 82: The catalogues , 2008, 0801.4894.

[25]  Z. Ivezic,et al.  Candidate RR Lyrae Stars Found in Sloan Digital Sky Survey Commissioning Data , 2000, astro-ph/0004130.

[26]  S. Hawley,et al.  Evidence for Distinct Components of the Galactic Stellar Halo from 838 RR Lyrae Stars Discovered in the LONEOS-I Survey , 2007, 0706.1583.

[27]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[28]  N. Simon,et al.  A PROVISIONAL RR LYRAE DISTANCE SCALE , 1993 .

[29]  Heidi Jo Newberg,et al.  Sagittarius Tidal Debris 90 Kiloparsecs from the Galactic Center , 2003 .

[30]  G. Clementini,et al.  Globular Cluster Distances from RR Lyrae Stars , 2003, astro-ph/0301550.

[31]  C. Sturch Intrinsic UBV colors of RR Lyrae stars , 1966 .

[32]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[33]  Predicted properties of RR Lyrae stars in the Sloan Digital Sky Survey photometric system , 2006, astro-ph/0607198.

[34]  N. Suntzeff,et al.  Metal abundances of RR Lyrae variables in selected Galactic star fields. V, The Lick Astrographic fields at intermediate Galactic latitudes , 1991 .

[35]  Kathryn V. Johnston,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005 .

[36]  P. Th. Oosterhoff,et al.  Some remarks on the variable stars in globular clusters , 1939 .

[37]  T. Beers,et al.  PROPER MOTIONS IN KAPTEYN SELECTED AREA 103: A PRELIMINARY ORBIT FOR THE VIRGO STELLAR STREAM , 2009, 0907.1249.

[38]  T. Beers,et al.  TRACING SAGITTARIUS STRUCTURE WITH SDSS AND SEGUE IMAGING AND SPECTROSCOPY , 2009, 0905.4502.

[39]  G. Kovacs,et al.  Computation of the Fourier parameters of RR Lyrae stars by template fitting , 2006, astro-ph/0610823.

[40]  A. Sandage,et al.  The Oosterhoff period groups and the age of globular clusters. I. Photometry of cluster variables in M 15. , 1981 .

[41]  Fnal,et al.  The Field of Streams: Sagittarius and its Siblings , 2006, astro-ph/0605025.

[42]  M. Catelan Horizontal branch stars: the interplay between observations and theory, and insights into the formation of the Galaxy , 2005 .

[43]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[44]  Mapping the Galactic Halo. III. Simulated Observations of Tidal Streams , 2000, astro-ph/0012307.

[45]  Danielle Alloin,et al.  Stellar candles for the extragalactic distance scale , 2003 .

[46]  Christopher W. Stubbs,et al.  The MACHO Project LMC Variable Star Inventory.II.LMC RR Lyrae Stars- Pulsational Characteristics and Indications of a Global Youth of the LMC , 1996 .

[47]  A. Katherina Vivas,et al.  VLT Spectroscopy of RR Lyrae Stars in the Sagittarius Tidal Stream , 2004, astro-ph/0410131.

[48]  Kathryn V. Johnston,et al.  Fossil Signatures of Ancient Accretion Events in the Halo , 1995 .

[49]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[50]  Puragra Guhathakurta,et al.  The Stellar Content of Galaxy Halos: A Comparison between ΛCDM Models and Observations of M31 , 2007, 0709.2076.

[51]  A. K. Vivas,et al.  SPECTROSCOPY OF BRIGHT QUEST RR LYRAE STARS: VELOCITY SUBSTRUCTURES TOWARD VIRGO , 2008, 0807.1735.

[52]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[53]  Heidelberg,et al.  Substructure revealed by RR Lyraes in SDSS Stripe 82 , 2009, 0906.0498.

[54]  Laurent Eyer,et al.  Variable stars across the observational HR diagram , 2007, 0712.3797.

[55]  B. Blanco RR Lyrae variables in a Galactic bulge window , 1992 .

[56]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[57]  C. Brook,et al.  THE DUAL ORIGIN OF STELLAR HALOS , 2009, 0904.3333.

[58]  Brinkmann,et al.  SDSS Standard Star Catalog for Stripe 82: the Dawn of Industrial 1% Optical Photometry , 2007 .

[59]  The QUEST RR Lyrae Survey. II. The Halo Overdensities in the First Catalog , 2006, astro-ph/0604359.

[60]  A. Sandage The Metallicity Dependence of the Fourier Components of RR Lyrae Light Curves is the Oosterhoff-Arp-Preston Period Ratio Effect in Disguise , 2004, astro-ph/0405480.

[61]  Gerard Gilmore,et al.  The Kinematics, Orbit, and Survival of the Sagittarius Dwarf Spheroidal Galaxy , 1997 .

[62]  Joachim Stadel,et al.  Tidal debris of dwarf spheroidals as a probe of structure formation models , 2001, astro-ph/0110386.

[63]  K. Schwarzschild,et al.  The Observatory , 1886 .

[64]  A. K. Vivas,et al.  The QUEST RR Lyrae Survey: Confirmation of the Clump at 50 Kiloparsecs and Other Overdensities in the Outer Halo , 2001, astro-ph/0105135.

[65]  A Multicolor and Fourier Study of RR Lyrae Variables in the Globular Cluster NGC 5272 (M3) , 2004, astro-ph/0409567.

[66]  Detection of a 60°-long dwarf galaxy debris stream , 2006, astro-ph/0605396.

[67]  B. Schmidt,et al.  Revealing Substructure in the Galactic Halo: The SEKBO RR Lyrae Survey , 2007, 0711.2337.

[68]  George W. Preston,et al.  A Spectroscopic Study of the RR Lyrae Stars. , 1959 .

[69]  A. Helmi,et al.  Mapping the Galactic Halo. V. Sagittarius Dwarf Spheroidal Tidal Debris 60° from the Main Body , 2001 .

[70]  C. Prieto,et al.  INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. I. THE ECHOS OF MILKY WAY FORMATION , 2009, 0908.2627.

[71]  B. Chaboyer,et al.  METALLICITY ANALYSIS OF MACHO GALACTIC BULGE RR0 LYRAE STARS FROM THEIR LIGHT CURVES , 2008, 0809.1645.

[72]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[73]  G. Carraro,et al.  Spectroscopy of QUEST RR Lyrae Variables: The New Virgo Stellar Stream , 2005, astro-ph/0510589.

[74]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[75]  Horace A. Smith,et al.  RR Lyrae Stars , 1995 .

[76]  Ž. Ivezić,et al.  ACCEPTED FOR PUBLICATION IN APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 GALACTIC GLOBULAR AND OPEN CLUSTERS IN THE SLOAN DIGITAL SKY SURVEY. II. TEST OF THEORETICAL STELLAR ISOCHRONES , 2022 .

[77]  D. Weinberg,et al.  Hierarchical Galaxy Formation and Substructure in the Galaxy’s Stellar Halo , 2000, astro-ph/0007295.

[78]  A. Layden The metallicities and kinematics of RR Lyrae variables, 1: New observations of local stars , 1994 .

[79]  T. Beers,et al.  Detection of a galactic color gradient for blue horizontal-branch stars of the halo field and implications for the halo age and density distributions , 1991 .

[80]  Zeljko Ivezic,et al.  Sloan Digital Sky Survey Standard Star Catalog for Stripe 82: The Dawn of Industrial 1% Optical Photometry , 2007, astro-ph/0703157.

[81]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[82]  Amina Helmi,et al.  The Galaxy and its stellar halo: insights on their formation from a hybrid cosmological approach , 2008, 0804.2465.

[83]  D. Schneider,et al.  The Overdensity in Virgo, Sagittarius Debris, and the Asymmetric Spheroid , 2007, 0706.3391.

[84]  B. Yanny,et al.  An Orphan in the "Field of Streams" , 2007 .