State observer design for quadratic parameter varying (QPV) systems
暂无分享,去创建一个
[1] Xiuzhen Zhang,et al. Stability and stabilisation for time-varying polytopic quadratic systems , 2017, Int. J. Control.
[2] C. Cosentino,et al. State Estimation in Nonlinear Quadratic Systems , 2010 .
[3] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[4] Christian Hoffmann,et al. A Survey of Linear Parameter-Varying Control Applications Validated by Experiments or High-Fidelity Simulations , 2015, IEEE Transactions on Control Systems Technology.
[5] P. Apkarian,et al. LPV techniques for control of an inverted pendulum , 1999, IEEE Control Systems.
[6] State observer for quadratic systems , 1983 .
[7] Francesco Amato,et al. Stability analysis of nonlinear quadratic systems via polyhedral Lyapunov functions , 2008, 2008 American Control Conference.
[8] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[9] Thierry-Marie Guerra,et al. Observer design for Takagi-Sugeno descriptor models: An LMI approach , 2015, Autom..
[10] Junmin Wang,et al. $\mathcal{H}_{\infty}$ Observer Design for LPV Systems With Uncertain Measurements on Scheduling Variables: Application to an Electric Ground Vehicle , 2016, IEEE/ASME Transactions on Mechatronics.
[11] Tor Arne Johansen,et al. Observers for interconnected nonlinear and linear systems , 2012, Autom..
[12] Damiano Rotondo,et al. Analysis and design of quadratic parameter varying (QPV) control systems with polytopic attractive region , 2018, J. Frankl. Inst..
[13] Pierre Apkarian,et al. Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..
[14] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .
[15] Wilson J. Rugh,et al. Research on gain scheduling , 2000, Autom..
[16] Vijay Vittal,et al. Application of the normal form of vector fields to predict interarea separation in power systems , 1997 .
[17] Damiano Rotondo,et al. State estimation and decoupling of unknown inputs in uncertain LPV systems using interval observers , 2018, Int. J. Control.
[18] D. Luenberger. An introduction to observers , 1971 .
[19] S. Bittanti,et al. Affine Parameter-Dependent Lyapunov Functions and Real Parametric Uncertainty , 1996 .
[20] Michael E. Fitzpatrick,et al. Optimal design of a quadratic parameter varying vehicle suspension system using contrast-based Fruit Fly Optimisation , 2018, Appl. Soft Comput..
[21] Damiano Rotondo,et al. Robust unknown input observer for state and fault estimation in discrete-time Takagi–Sugeno systems , 2016, Int. J. Syst. Sci..
[22] Saïd Mammar,et al. On Unknown Input Observers for LPV Systems , 2015, IEEE Transactions on Industrial Electronics.
[23] Keum-Shik Hong,et al. Observer Design for One-Sided Lipschitz Nonlinear Systems Subject to Measurement Delays , 2015 .
[24] Francesco Amato,et al. An insight into tumor dormancy equilibrium via the analysis of its domain of attraction , 2008, Biomed. Signal Process. Control..
[25] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[26] Shengyuan Xu,et al. Observer design for uncertain nonlinear systems with unmodeled dynamics , 2015, Autom..
[27] Bruno Siciliano,et al. Modelling and Control of Robot Manipulators , 1997, Advanced Textbooks in Control and Signal Processing.
[28] O. Rössler. Chaotic Behavior in Simple Reaction Systems , 1976 .
[29] Jeff S. Shamma,et al. An Overview of LPV Systems , 2012 .
[30] Robert Babuska,et al. Fuzzy gain scheduling: controller and observer design based on Lyapunov method and convex optimization , 2003, IEEE Trans. Fuzzy Syst..
[31] Franco Blanchini,et al. Set invariance in control , 1999, Autom..
[32] Damiano Rotondo. Advances in Gain-Scheduling and Fault Tolerant Control Techniques , 2017 .
[33] G. Balas,et al. Development of linear-parameter-varying models for aircraft , 2004 .
[34] Carlo Cosentino,et al. On the region of attraction of nonlinear quadratic systems , 2007, Autom..