Generating functions with high-order poles are nearly polynomial
暂无分享,去创建一个
[1] J. Propp,et al. Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.
[2] Harry Furstenberg,et al. Algebraic functions over finite fields , 1967 .
[3] J. T. Chayes,et al. Ornstein-Zernike behavior for self-avoiding walks at all noncritical temperatures , 1986 .
[4] R. Remmert,et al. Theory Of Stein Spaces , 1979 .
[5] Philippe Flajolet,et al. Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..
[6] Edward A. Bender,et al. Central and Local Limit Theorems Applied to Asymptotic Enumeration II: Multivariate Generating Functions , 1983, J. Comb. Theory, Ser. A.
[7] Bruno Salvy,et al. Non-Commutative Elimination in Ore Algebras Proves Multivariate Identities , 1998, J. Symb. Comput..
[8] L. Lipshitz,et al. The diagonal of a D-finite power series is D-finite , 1988 .
[9] Jennifer Chayes,et al. Gaussian fluctuations of connectivities in the subcritical regime of percolation , 1991 .
[10] 一松 信,et al. R.C. Gunning and H.Rossi: Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N.J., 1965, 317頁, 15×23cm, $12.50. , 1965 .
[11] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[12] R. Stanley,et al. Enumerative Combinatorics: Index , 1999 .
[13] D. Klarner,et al. The diagonal of a double power series , 1971 .
[14] Anatolii A. Logunov,et al. Analytic functions of several complex variables , 1965 .