One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure.

We report the observation of a very large negative magnetoresistance effect in a van der Waals tunnel junction incorporating a thin magnetic semiconductor, CrI3, as the active layer. At constant voltage bias, current increases by nearly one million percent upon application of a 2 T field. The effect arises from a change between antiparallel to parallel alignment of spins across the different CrI3 layers. Our results elucidate the nature of the magnetic state in ultrathin CrI3 and present new opportunities for spintronics based on two-dimensional materials.

[1]  Jun Zhang,et al.  Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals , 2016 .

[2]  V. Eyert,et al.  Electronic structure and magnetic ordering of the semiconducting chromium trihalides CrCl3, CrBr3, and CrI3 , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  K. T. Law,et al.  Ising pairing in superconducting NbSe2 atomic layers , 2015, 1507.08731.

[4]  Chi-Hang Lam,et al.  Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides , 2015, 1507.07275.

[5]  P. Kim,et al.  Nature of the quantum metal in a two-dimensional crystalline superconductor , 2015, Nature Physics.

[6]  T. L. Kirk,et al.  A new phase diagram for layered antiferromagnetic films , 2003, Nature materials.

[7]  J. Moodera,et al.  Exchange splitting and bias-dependent transport in EuO spin filter tunnel barriers , 2009 .

[8]  N. Peres,et al.  Electron tunneling through ultrathin boron nitride crystalline barriers. , 2012, Nano letters.

[9]  M. Lenzlinger,et al.  Fowler‐Nordheim Tunneling into Thermally Grown SiO2 , 1969 .

[10]  Jie Shan,et al.  Strongly enhanced charge-density-wave order in monolayer NbSe2. , 2015, Nature nanotechnology.

[11]  L. Esaki,et al.  Magnetointernal Field Emission in Junctions of Magnetic Insulators , 1967 .

[12]  F. Guinea,et al.  Enhanced superconductivity in atomically thin TaS2 , 2016, Nature Communications.

[13]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[14]  Michael A. McGuire,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[15]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[16]  A P Ramirez REVIEW ARTICLE: Colossal magnetoresistance , 1997 .

[17]  Martina Müller,et al.  Magnetoresistance in double spin filter tunnel junctions with nonmagnetic electrodes and its unconventional bias dependence. , 2009, Physical review letters.

[18]  J. Moodera,et al.  Determining exchange splitting in a magnetic semiconductor by spin-filter tunneling. , 2008, Physical review letters.

[19]  Xiang Zhang,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[20]  M. Hervieu,et al.  Colossal Magnetoresistance Manganite Perovskites: Relations between Crystal Chemistry and Properties , 1998 .

[21]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[22]  Xiaodong Xu,et al.  Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics , 2017, Science Advances.

[23]  Jie Shan,et al.  Electric-field switching of two-dimensional van der Waals magnets , 2018, Nature Materials.

[24]  R. Tebble,et al.  The Barkhausen Effect , 1948 .

[25]  Characterization of collective ground states in single-layer NbSe 2 , 2015, 1506.08460.

[26]  T. Taniguchi,et al.  Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling , 2018, Science.

[27]  Brian C. Sales,et al.  Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3 , 2015 .

[28]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[29]  David G. Pettifor,et al.  Perspectives of giant magnetoresistance , 2001 .

[30]  R. Lake,et al.  Charge density waves in exfoliated films of van der Waals materials: evolution of Raman spectrum in TiSe2. , 2012, Nano letters.

[31]  L. Kourkoutis,et al.  Structure and control of charge density waves in two-dimensional 1T-TaS2 , 2015, Proceedings of the National Academy of Sciences.

[32]  Shiyan Li,et al.  Gate-tunable phase transitions in thin flakes of 1T-TaS2. , 2014, Nature nanotechnology.

[33]  Takashi Taniguchi,et al.  Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 , 2018, Nature Communications.

[34]  K Watanabe,et al.  Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere. , 2015, Nano letters.

[35]  Xiaodong Xu,et al.  Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides , 2017, Nature Communications.

[36]  Jie Shan,et al.  Controlling magnetism in 2D CrI3 by electrostatic doping , 2018, Nature Nanotechnology.

[37]  Tsutomu Nojima,et al.  Highly crystalline 2D superconductors , 2017 .

[38]  Michael A. McGuire,et al.  Electrical control of 2D magnetism in bilayer CrI3 , 2018, Nature Nanotechnology.

[39]  Michael A. McGuire,et al.  Ligand-field helical luminescence in a 2D ferromagnetic insulator , 2017, 1710.05550.

[40]  A. Fujiwara,et al.  Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2 , 2014, Scientific Reports.

[41]  James K. Freericks,et al.  Zone-center phonons of bulk, few-layer, and monolayer 1 T − TaS 2 : Detection of commensurate charge density wave phase through Raman scattering , 2015, 1511.04462.