Modelling of plasmon-enhanced fluorescence in a single light-harvesting complex near a gold nanorod

LHCII — the main light-harvesting complex of plants and green algae — is the most abundant membrane protein on earth. Here, we investigate theoretically the effect of exciton-plasmon coupling on LHCII’s fluorescence quantum yield and compare our modelling results to experimental data where plasmon-enhanced fluorescence has been reported in an LHCII–gold nanorod system. One of the models relies on the modified Gersten-Nitzan approach; the other is based on classical plexcitonics. We show that the latter is more robust and leads to more realistic enhancement factors.

[1]  F. D’Souza,et al.  Plasmonic Enhancement of Biosolar Cells Employing Light Harvesting Complex II Incorporated with Core–Shell Metal@TiO2 Nanoparticles , 2016 .

[2]  S. Kudera,et al.  Hybrid nanostructures for enhanced light-harvesting: plasmon induced increase in fluorescence from individual photosynthetic pigment-protein complexes. , 2011, Nano letters.

[3]  Ankur Gupta,et al.  Resonant plasmonic enhancement of single-molecule fluorescence by individual gold nanorods. , 2014, ACS nano.

[4]  Jacob B. Khurgin,et al.  Impact of high-order surface plasmon modes of metal nanoparticles on enhancement of optical emission , 2009 .

[5]  Zhenfeng Liu,et al.  Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution , 2004, Nature.

[6]  L. Liz‐Marzán,et al.  Optical response of individual Au-Ag@SiO₂ heterodimers. , 2013, ACS nano.

[7]  M. Orrit,et al.  Plasmonic Enhancement of Two-Photon-Excited Luminescence of Single Quantum Dots by Individual Gold Nanorods , 2018, ACS photonics.

[8]  Tjaart P. J. Krüger,et al.  Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes. , 2019, Nanoscale.

[9]  Alexander Moroz,et al.  Depolarization field of spheroidal particles , 2009 .

[10]  Marc Lamy de la Chapelle,et al.  Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method , 2005 .

[11]  Luke C. Ugwuoke,et al.  Optical properties of a nanoegg–nanorod heterodimer: a quasi-static analysis , 2020 .

[12]  L. Warne,et al.  Dipole Approximation to Predict the Resonances of Dimers Composed of Dielectric Resonators for Directional Emission , 2017 .

[13]  E. L. Le Ru,et al.  Accurate Modeling of the Polarizability of Dyes for Electromagnetic Calculations , 2017, ACS omega.

[14]  Jan Renger,et al.  Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching , 2014, Nature Communications.

[15]  A. Polman,et al.  Strong luminescence quantum-efficiency enhancement near prolate metal nanoparticles: Dipolar versus higher-order modes , 2007 .

[16]  A V Hershey,et al.  Computation of Special Functions , 1978 .

[17]  A. Nitzan,et al.  Spectroscopic properties of molecules interacting with small dielectric particles , 1981 .

[18]  Derek Tseng,et al.  Plasmonics Enhanced Smartphone Fluorescence Microscopy , 2017, Scientific Reports.

[19]  M. Käll,et al.  Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates , 2013, Scientific Reports.

[20]  W. Barford,et al.  Theoretical investigation of the role of strongly coupled chlorophyll dimers in photoprotection of LHCII. , 2008, The journal of physical chemistry. B.

[21]  J. Baumberg,et al.  Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes , 2016, Nano letters.

[22]  Matthew P. Johnson,et al.  The photoprotective molecular switch in the photosystem II antenna. , 2012, Biochimica et biophysica acta.

[23]  J. Hupp,et al.  Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[24]  Tomasz J. Antosiewicz,et al.  Plasmon–Exciton Interactions in a Core–Shell Geometry: From Enhanced Absorption to Strong Coupling , 2014 .

[25]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[26]  Matthew Pelton,et al.  Quantum-dot-induced transparency in a nanoscale plasmonic resonator. , 2010, Optics express.

[27]  Shao-Ding Liu,et al.  Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex. , 2007, Optics letters.