CLASH-VLT: Environment-driven evolution of galaxies in the z=0.209 cluster Abell 209

The analysis of galaxy properties and the relations among them and the environment, can be used to investigate the physical processes driving galaxy evolution. We study the cluster A209 by using the CLASH-VLT spectroscopic data combined with Subaru photometry, yielding to 1916 cluster members down to a stellar mass of 10^{8.6} Msun. We determine: i) the stellar mass function of star-forming and passive galaxies; ii) the intra-cluster light and its properties; iii) the orbits of low- and high-mass passive galaxies; and iv) the mass-size relation of ETGs. The stellar mass function of the star-forming galaxies does not depend on the environment, while the slope found for passive galaxies becomes flatter in the densest region. The color distribution of the intra-cluster light is consistent with the color of passive members. The analysis of the dynamical orbits shows that low-mass passive galaxies have tangential orbits, avoiding small pericenters around the BCG. The mass-size relation of low-mass passive ETGs is flatter than that of high mass galaxies, and its slope is consistent with that of field star-forming galaxies. Low-mass galaxies are also more compact within the scale radius of 0.65 Mpc. The ratio between stellar and number density profiles shows a mass segregation in the center. The comparative analysis of the stellar and total density profiles indicates that this effect is due to dynamical friction. Our results are consistent with a scenario in which the "environmental quenching" of low-mass galaxies is due to mechanisms such as harassment out to R200, starvation and ram-pressure stripping at smaller radii, as supported by the analysis of the mass function, of the dynamical orbits and of the mass-size relation of passive early-types in different regions. Our analyses support the idea that the intra-cluster light is formed through the tidal disruption of subgiant galaxies.

[1]  B. Gibson,et al.  The sensitivity of harassment to orbit: mass loss from early-type dwarfs in galaxy clusters , 2015, 1509.02537.

[2]  M. Meneghetti,et al.  CLASH-VLT: Substructure in the galaxy cluster MACS J1206.2-0847 from kinematics of galaxy populations ⋆ , 2015, 1503.05607.

[3]  R. Kotulla,et al.  On the occurrence of galaxy harassment , 2015, 1503.01965.

[4]  R. Hanuschik,et al.  The outer regions of the giant Virgo galaxy M 87 Kinematic separation of stellar halo and intracluster light , 2015, 1502.02032.

[5]  M. Bradač,et al.  On the origin of the intracluster light in massive galaxy clusters , 2015, 1501.02251.

[6]  A. Fontana,et al.  Deconstructing the Galaxy Stellar Mass Function with UKIDSS and CANDELS: The Impact of Colour, Structure and Environment , 2014, 1411.3339.

[7]  O. Lahav,et al.  CLASH: THE CONCENTRATION-MASS RELATION OF GALAXY CLUSTERS , 2014, 1404.1376.

[8]  G. Gavazzi,et al.  On the origin of the faint-end of the red sequence in high-density environments , 2014, 1411.5513.

[9]  M. Scodeggio,et al.  CLASH-VLT: The stellar mass function and stellar mass density profile of the z=0.44 cluster of galaxies MACS J1206.2-0847 , 2014, 1408.6356.

[10]  J. Stone,et al.  THE TIES THAT BIND? GALACTIC MAGNETIC FIELDS AND RAM PRESSURE STRIPPING , 2014, 1408.4521.

[11]  H. Rix,et al.  GEOMETRY OF STAR-FORMING GALAXIES FROM SDSS, 3D-HST, AND CANDELS , 2014, 1407.4233.

[12]  I. Trujillo,et al.  INTRACLUSTER LIGHT AT THE FRONTIER: A2744 , 2014, 1405.2070.

[13]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[14]  M. Meneghetti,et al.  Intracluster light properties in the CLASH-VLT cluster MACS J1206.2-0847 , 2014, 1403.4979.

[15]  S. Borgani,et al.  On the formation and physical properties of the intracluster light in hierarchical galaxy formation models , 2013, 1311.2076.

[16]  A. Biviano,et al.  CLASH-VLT: A VIMOS Large Programme to Map the Dark Matter Mass Distribution in Galaxy Clusters and Probe Distant Lensed Galaxies , 2014 .

[17]  M. Meneghetti,et al.  CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z = 0.44 galaxy cluster MACS J1206.2-0847 , 2013, 1307.5867.

[18]  M. Brescia,et al.  PHOTOMETRIC REDSHIFTS FOR QUASARS IN MULTI-BAND SURVEYS , 2013, 1305.5641.

[19]  H. Hoekstra,et al.  The environmental dependence of the stellar mass function at z ∼ 1 Comparing cluster and field between the GCLASS and UltraVISTA surveys , 2013, 1304.5525.

[20]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[21]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[22]  S. Borgani,et al.  The relation between velocity dispersion and mass in simulated clusters of galaxies: dependence on the tracer and the baryonic physics , 2013, 1301.1682.

[23]  V. Vikram,et al.  NO EVIDENCE FOR A DEPENDENCE OF THE MASS–SIZE RELATION OF EARLY-TYPE GALAXIES ON ENVIRONMENT IN THE LOCAL UNIVERSE , 2012, 1212.4143.

[24]  M. Brescia,et al.  Inside Catalogs: A Comparison of Source Extraction Software , 2012, 1212.0564.

[25]  Timothy A. Davis,et al.  The ATLAS3D project XV: benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, fundamental plane and mass plane , 2012, 1208.3522.

[26]  I. Paris,et al.  Near-infrared spectroscopy of post-starburst galaxies: a limited impact of TP-AGB stars on galaxy spectral energy distributions , 2012, 1205.4717.

[27]  Il,et al.  The galaxy stellar mass function and its evolution with time show no dependence on global environment , 2011, 1111.0830.

[28]  M. D’Onofrio,et al.  SUPERDENSE GALAXIES AND THE MASS–SIZE RELATION AT LOW REDSHIFT , 2012, 1211.1005.

[29]  A. Popolo On the density‐profile slope of clusters of galaxies , 2012 .

[30]  Chien Y. Peng,et al.  GALAPAGOS: From Pixels to Parameters , 2012, 1203.1831.

[31]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06 , 2011, 1111.5707.

[32]  Pasadena,et al.  The importance of the local density in shaping the galaxy stellar mass functions , 2011, 1111.0832.

[33]  O. Lahav,et al.  THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW , 2011, 1106.3328.

[34]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[35]  A. J. Cenarro,et al.  Evolutionary stellar population synthesis with MILES – I. The base models and a new line index system , 2010, 1004.4439.

[36]  R. Smith,et al.  How effective is harassment on infalling late-type dwarfs? , 2010, 1004.4602.

[37]  Á. Bongiovanni,et al.  Study of star-forming galaxies in SDSS up to redshift 0.4 II. Evolution from the fundamental parameters: mass, metallicity & SFR , 2010, 1003.5475.

[38]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[39]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[40]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[41]  D. Thompson,et al.  THE BIMODAL GALAXY STELLAR MASS FUNCTION IN THE COSMOS SURVEY TO z ∼ 1: A STEEP FAINT END AND A NEW GALAXY DICHOTOMY , 2009, 0910.5720.

[42]  A. Grazian,et al.  DEEP U BAND AND R IMAGING OF GOODS-SOUTH: OBSERVATIONS, DATA REDUCTION AND FIRST RESULTS, , 2009, 0906.4250.

[43]  C. McBride,et al.  TIDAL STREAMS OF INTRACLUSTER LIGHT , 2009, 0906.1185.

[44]  R. Pelló,et al.  THE REST-FRAME OPTICAL LUMINOSITY FUNCTION OF CLUSTER GALAXIES AT z < 0.8 AND THE ASSEMBLY OF THE CLUSTER RED SEQUENCE , 2009, 0905.4503.

[45]  A. Biviano Galaxy systems in the optical and infrared , 2008, 0811.3535.

[46]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[47]  M. Geller,et al.  SPECTROSCOPIC DETERMINATION OF THE LUMINOSITY FUNCTION IN THE GALAXY CLUSTERS A2199 AND VIRGO , 2008 .

[48]  M. Capaccioli,et al.  Global properties of the rich cluster ABCG 209 at z∼ 0.2. Spectroscopic and photometric catalogue , 2008, 0804.1226.

[49]  R. Wechsler,et al.  The Hierarchical Build-Up of Massive Galaxies and the Intracluster Light since z = 1 , 2007, astro-ph/0703374.

[50]  D. Calzetti,et al.  The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing , 2007, astro-ph/0703095.

[51]  G. Bryan,et al.  Environmentally Driven Evolution of Simulated Cluster Galaxies , 2007, 0709.1720.

[52]  S. Borgani,et al.  The importance of mergers for the origin of intracluster stars in cosmological simulations of galaxy clusters , 2007, astro-ph/0701925.

[53]  B. Madore,et al.  The Fate of Spiral Galaxies in Clusters: The Star Formation History of the Anemic Virgo Cluster Galaxy NGC 4569 , 2006, astro-ph/0609020.

[54]  A. Biviano,et al.  RASS-SDSS galaxy cluster survey: IV. A ubiquitous dwarf galaxy population in clusters , 2006 .

[55]  R. Bouwens,et al.  The Morphology-Density Relation in z ~ 1 Clusters , 2005, astro-ph/0501224.

[56]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[57]  A. Babul,et al.  The evolution of substructure in galaxy, group and cluster haloes - I. Basic dynamics , 2003, astro-ph/0301612.

[58]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[59]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[60]  P. Merluzzi,et al.  Optical Luminosity Functions of the Abell Galaxy Cluster ABCG 209 at z=0.21 ⋆ , 2003, astro-ph/0303598.

[61]  J. Kneib,et al.  A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024+16 at z = 0.4. I. Morphological Distributions to 5 Mpc Radius , 2003, astro-ph/0303267.

[62]  J. Brinkmann,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[63]  G. Busarello,et al.  Internal Dynamics of ABCG 209 at z ~ 0.21 , 2002, astro-ph/0209536.

[64]  G. Busarello,et al.  Structure and evolution of galaxy clusters: Internal dynamics of ABCG 209 at $z\;\sim$ 0.21 , 2003 .

[65]  Isaac Shlosman,et al.  Dark Halos: The Flattening of the Density Cusp by Dynamical Friction , 2001, astro-ph/0103386.

[66]  R. Giovanelli,et al.  The H I Content of Spirals. II. Gas Deficiency in Cluster Galaxies , 2000, astro-ph/0007402.

[67]  J. Navarro,et al.  The Origin of Star Formation Gradients in Rich Galaxy Clusters , 2000, astro-ph/0004078.

[68]  G. Lake,et al.  On the survival and destruction of spiral galaxies in clusters , 1998, astro-ph/9811127.

[69]  G. Lake,et al.  Resolving the Structure of Cold Dark Matter Halos , 1997, astro-ph/9709051.

[70]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[71]  D. Fadda,et al.  The Observational Distribution of Internal Velocity Dispersions in Nearby Galaxy Clusters , 1996, astro-ph/9606098.

[72]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[73]  G. Lake,et al.  Galaxy harassment and the evolution of clusters of galaxies , 1995, Nature.

[74]  K. Gebhardt,et al.  Fabry-Perot measurements of the dynamics of globular cluster cores: M15 (NGC 7078) , 1994, astro-ph/9402064.

[75]  I. STATISTICAL ANALYSIS OF THE SSG QUASARS , 2022 .

[76]  G. Kriss,et al.  Dynamics of the poor clusters MKW 4 and AWM 4 , 1986 .

[77]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[78]  S. White,et al.  Simulations of mergers between disc–halo galaxies , 1983 .

[79]  Gary A. Mamon,et al.  M/L and velocity anisotropy from observations of spherical galaxies, or must M87 have a massive black hole? , 1982 .

[80]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .

[81]  B. Tinsley,et al.  The evolution of disk galaxies and the origin of S0 galaxies , 1980 .

[82]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[83]  A. Oemler,et al.  Evolution of galaxies in clusters. I. ISIT photometry of Cl 0024 + 1654 and 3C 295 , 1978 .

[84]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[85]  J. Gunn,et al.  On the Infall of Matter into Clusters of Galaxies and Some Effects on Their Evolution , 1972 .

[86]  F. Zwicky,et al.  THE COMA CLUSTER OF GALAXIES , 1951 .

[87]  L. Spitzer,et al.  Stellar populations and collisions of galaxies. , 1951 .