Biomechanical model of the human cornea: considering shear stiffness and regional variation of collagen anisotropy and density.

[1]  Akram Joda,et al.  Stress free configuration of the human eye. , 2013, Medical engineering & physics.

[2]  P. Pinsky,et al.  The role of 3-D collagen organization in stromal elasticity: a model based on X-ray diffraction data and second harmonic-generated images , 2013, Biomechanics and Modeling in Mechanobiology.

[3]  P. Pinsky,et al.  Depth-dependent transverse shear properties of the human corneal stroma. , 2012, Investigative ophthalmology & visual science.

[4]  B. Boyce,et al.  An inverse finite element method for determining the anisotropic properties of the cornea , 2011, Biomechanics and modeling in mechanobiology.

[5]  A. Elsheikh,et al.  Characterization of age-related variation in corneal biomechanical properties , 2010, Journal of The Royal Society Interface.

[6]  A. Elsheikh,et al.  Regional variation in the biomechanical properties of the human sclera. , 2010, Experimental eye research.

[7]  R. Ogden,et al.  On the third- and fourth-order constants of incompressible isotropic elasticity. , 2010, The Journal of the Acoustical Society of America.

[8]  Günther Meschke,et al.  A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells , 2010, Biomechanics and modeling in mechanobiology.

[9]  X Larrea,et al.  Biomechanical model of human cornea based on stromal microstructure. , 2010, Journal of biomechanics.

[10]  Günther Meschke,et al.  Constitutive modeling of crimped collagen fibrils in soft tissues. , 2009, Journal of the mechanical behavior of biomedical materials.

[11]  A. Elsheikh,et al.  Numerical Study of the Effect of Corneal Layered Structure on Ocular Biomechanics , 2009, Current eye research.

[12]  G. Holzapfel,et al.  Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. , 2008, Journal of biomechanical engineering.

[13]  R. Jones,et al.  Full-field deformation of bovine cornea under constrained inflation conditions. , 2008, Biomaterials.

[14]  Ahmed Elsheikh,et al.  Numerical modelling of corneal biomechanical behaviour , 2007, Computer methods in biomechanics and biomedical engineering.

[15]  A. Elsheikh,et al.  Assessment of Corneal Biomechanical Properties and Their Variation with Age , 2007, Current eye research.

[16]  Craig Boote,et al.  Mapping collagen organization in the human cornea: left and right eyes are structurally distinct. , 2006, Investigative ophthalmology & visual science.

[17]  R. Ogden,et al.  Hyperelastic modelling of arterial layers with distributed collagen fibre orientations , 2006, Journal of The Royal Society Interface.

[18]  B Calvo,et al.  Biomechanical modeling of refractive corneal surgery. , 2006, Journal of biomechanical engineering.

[19]  A. Pandolfi,et al.  A model for the human cornea: constitutive formulation and numerical analysis , 2006, Biomechanics and modeling in mechanobiology.

[20]  Bernd Markert,et al.  A general polyconvex strain‐energy function for fiber‐reinforced materials , 2005 .

[21]  P. Pinsky,et al.  Computational modeling of mechanical anisotropy in the cornea and sclera , 2005, Journal of cataract and refractive surgery.

[22]  C. R. Ethier,et al.  Ocular biomechanics and biotransport. , 2004, Annual review of biomedical engineering.

[23]  C. Boote,et al.  The organization of collagen in the corneal stroma. , 2004, Experimental eye research.

[24]  K. Meek,et al.  X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. , 2004, Structure.

[25]  Craig Boote,et al.  Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications. , 2003, Investigative ophthalmology & visual science.

[26]  Gerhard A. Holzapfel,et al.  A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications , 2001 .

[27]  C. Roberts The cornea is not a piece of plastic. , 2000, Journal of refractive surgery.

[28]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[29]  C. W. Oyster The human eye: structure and function , 1999, Nature medicine.

[30]  K. Meek,et al.  Circumcorneal annulus of collagen fibrils in the human limbus. , 1998, Investigative ophthalmology & visual science.

[31]  T. Ushiki,et al.  The three-dimensional organization of collagen fibrils in the human cornea and sclera. , 1991, Investigative ophthalmology & visual science.

[32]  Timothy J Freegard,et al.  The physical basis of transparency of the normal cornea , 1997, Eye.

[33]  David A. Hoeltzel,et al.  Comments on 'The mechanical properties of the rabbit and human cornea'. , 1991, Journal of biomechanics.

[34]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[35]  Irving Fatt,et al.  Physiology of the eye : an introduction to the vegetative functions , 1978 .

[36]  A. Elsheikh,et al.  Edinburgh Research Explorer Ultrastructural changes in the retinopathy, globe enlarged (rge) chick cornea , 2022 .