Drug delivery by soft matter: matrix and vesicular carriers.

The increasing need for drug delivery systems that improve specificity and activity and at the same time reduce toxicity to ensure maximum treatment safety has led to the development of a great variety of drug vectors. Carriers based on soft matter have particularly interesting characteristics. Herein we present the current standing of the research in this area, and focus on two main families, namely matrix systems and vesicles. We outline the structure, properties, and potential applications of these vectors, and discuss their main advantages and drawbacks in their synthesis.

[1]  M. Zignani,et al.  Current status of pH-sensitive liposomes in drug delivery. , 2000, Progress in lipid research.

[2]  H. Rehage,et al.  Supramolekulare Aggregate auf Basis dendritischer Multischalenarchitekturen als universelle Nanotransporter , 2007 .

[3]  S. Frokjaer,et al.  Formulation and evaluation of release and swelling mechanism of a water-in-oil emulsion using factorial design. , 1999, International journal of pharmaceutics.

[4]  S. Tamilvanan,et al.  Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. , 2004, Progress in lipid research.

[5]  M. Dewhirst,et al.  The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. , 2001, Advanced drug delivery reviews.

[6]  T. Nagai,et al.  Pharmacokinetics and antitumor effects of vincristine carried by microemulsions composed of PEG-lipid, oleic acid, vitamin E and cholesterol. , 2003, International journal of pharmaceutics.

[7]  H. Fessi,et al.  [An original procedure for preparing nanocapsules of polyalkylcyanoacrylates for interfacial polymerization]. , 1986, Pharmaceutica acta Helvetiae.

[8]  M. Lawrence,et al.  Recent Advances in Microemulsions as Drug Delivery Vehicles , 2006 .

[9]  W. K. Wang,et al.  Effects of buoyancy convection on phase morphology during solidification of Pd40Ni40P20 alloy , 1999 .

[10]  S. Torrado,et al.  Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium. , 2003, Biomaterials.

[11]  P. Diwan,et al.  A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[12]  J. Zasadzinski,et al.  Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. , 1989, Science.

[13]  A. Samad,et al.  Liposomal drug delivery systems: an update review. , 2007, Current drug delivery.

[14]  A. Maitra,et al.  Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[15]  Yokoyama Masayuki,et al.  Block copolymer micelles as vehicles for drug delivery , 1993 .

[16]  G. Buckton,et al.  Dissolution behaviour of sulphonamides into sodium dodecyl sulfate micelles: a thermodynamic approach. , 1996, Journal of pharmaceutical sciences.

[17]  Ijeoma F. Uchegbu,et al.  The Lower-Generation Polypropylenimine Dendrimers Are Effective Gene-Transfer Agents , 2002, Pharmaceutical Research.

[18]  R. Jeppsson,et al.  Anticonvulsant activity in mice of diazepam in an emulsion formulation of intravenous administration. , 2009, Acta pharmacologica et toxicologica.

[19]  R. Müller,et al.  Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[20]  Martin Malmsten,et al.  Surfactants and Polymers in Drug Delivery , 2002 .

[21]  Robert C. Hider,et al.  Liposome formation from synthetic polyhydroxyl lipids. , 1991, Biochimica et biophysica acta.

[22]  E. Perez,et al.  Correlation between structure, aggregation behaviour and cellular toxicity of anti-HIV catanionic analogues of galactosylceramide. , 2003, Chemical communications.

[23]  E. Meijer,et al.  The dendritic box, shape-selective liberation of encapsulated guests , 1995 .

[24]  R. Müller,et al.  Solid lipid nanoparticles for parenteral drug delivery. , 2004, Advanced drug delivery reviews.

[25]  Christine Vauthier,et al.  Insulin-loaded W/O/W multiple emulsions: comparison of the performances of systems prepared with medium-chain-triglycerides and fish oil. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[26]  T. Allen,et al.  Pharmaco attributes of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes containing different types of cleavable lipopolymers. , 2004, Pharmacological research.

[27]  C. Tondre,et al.  Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis. , 2001, Advances in colloid and interface science.

[28]  I. Uchegbu,et al.  The evaluation of crown ether based niosomes as cation containing and cation sensitive drug delivery systems , 1997 .

[29]  T. Okano,et al.  “On–Off“ Thermocontrol of Solute Transport. II. Solute Release from Thermosensitive Hydrogels , 1991, Pharmaceutical Research.

[30]  S. Franceschi-Messant,et al.  Catanionic sugar derived surfactants, polymers and dendrimers: from molecules to targeted self-organized systems , 2005 .

[31]  Michał R. Radowski,et al.  Supramolecular aggregates of dendritic multishell architectures as universal nanocarriers. , 2007, Angewandte Chemie.

[32]  O. Wichterle,et al.  Hydrophilic Gels for Biological Use , 1960, Nature.

[33]  R. Haag Supramolekulare Wirkstoff‐Transportsysteme auf der Basis polymerer Kern‐Schale‐Architekturen , 2004 .

[34]  D. Devine,et al.  Biocompatibility testing of branched and linear polyglycidol. , 2006, Biomacromolecules.

[35]  Y. Bae,et al.  Hydrogel delivery systems based on polymer blends, block co-polymers or interpenetrating networks , 1993 .

[36]  S Higashi,et al.  Hepatic arterial injection chemotherapy for hepatocellular carcinoma with epirubicin aqueous solution as numerous vesicles in iodinated poppy-seed oil microdroplets: clinical application of water-in-oil-in-water emulsion prepared using a membrane emulsification technique. , 2000, Advanced drug delivery reviews.

[37]  J. Zimmerberg,et al.  Shape control through molecular segregation in giant surfactant aggregates. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Gabizon Selective tumor localization and improved therapeutic index of anthracyclines encapsulated in long-circulating liposomes. , 1992, Cancer research.

[39]  M. Sznitowska,et al.  The expulsion of lipophilic drugs from the cores of solid lipid microspheres in diluted suspensions and in concentrates. , 2006, International journal of pharmaceutics.

[40]  M. Cristea,et al.  Polymeric micelles for oral drug delivery: Why and how , 2004 .

[41]  S. Bhattacharya,et al.  SYNTHESIS AND VESICLE FORMATION FROM HYBRID BOLAPHILE/ AMPHIPHILE ION-PAIRS. EVIDENCE OF MEMBRANE PROPERTY MODULATION BY MOLECULAR DESIGN , 1998 .

[42]  T. Okano,et al.  Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. , 1990, Cancer research.

[43]  K. Kataoka Design of nanoscopic vehicles for drug targeting based on micellization of amphiphilic block copolymers , 1994 .

[44]  Allan S Hoffman,et al.  Hydrogels for biomedical applications. , 2002, Advanced drug delivery reviews.

[45]  A. Maitra,et al.  Novel Taxol formulation: polyvinylpyrrolidone nanoparticle-encapsulated Taxol for drug delivery in cancer therapy. , 1996, Oncology research.

[46]  H. N. Guimarães,et al.  Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. , 2007, Life sciences.

[47]  K. Kataoka,et al.  Block copolymer micelles for drug delivery: design, characterization and biological significance. , 2001, Advanced drug delivery reviews.

[48]  C. McCormick,et al.  Water-Soluble Polymers. 81. Direct Synthesis of Hydrophilic Styrenic-Based Homopolymers and Block Copolymers in Aqueous Solution via RAFT , 2001 .

[49]  S. Fukushima,et al.  Preparation and evaluation of o/w type emulsions containing antitumor prostaglandin. , 2000, Advanced drug delivery reviews.

[50]  M. Abe,et al.  Spontaneous Vesicle Formation from Aqueous Solutions of Didodecyldimethylammonium Bromide and Sodium Dodecyl sulfate Mixtures , 1995 .

[51]  S. Regen,et al.  Bilayer-forming ion pair amphiphiles from single-chain surfactants , 1990 .

[52]  S. Yuk,et al.  pH/Temperature-Responsive Polymer Composed of Poly((N,N-dimethylamino)ethyl methacrylate-co-ethylacrylamide) , 1997 .

[53]  T. Bramer,et al.  Pharmaceutical applications for catanionic mixtures , 2007, The Journal of pharmacy and pharmacology.

[54]  Mathias Winterhalter,et al.  Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. , 2002, BMC biotechnology.

[55]  N. Peppas,et al.  Hydrogels as mucoadhesive and bioadhesive materials: a review. , 1996, Biomaterials.

[56]  R. Müller,et al.  Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. , 2002, Advanced drug delivery reviews.

[57]  R. Haag,et al.  Supramolecular drug-delivery systems based on polymeric core-shell architectures. , 2004, Angewandte Chemie.

[58]  W. Pitt,et al.  A polymeric micelle system with a hydrolysable segment for drug delivery , 2006, Journal of biomaterials science. Polymer edition.

[59]  K. Letchford,et al.  A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. , 2007, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[60]  S. Webber,et al.  pH-Dependent Micellization of Poly(2-vinylpyridine)-block-poly(ethylene oxide) , 1996 .

[61]  C. Hawker,et al.  Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules , 1990 .

[62]  R. Haag,et al.  Dendritic polyglycerol: a new versatile biocompatible-material. , 2002, Journal of biotechnology.

[63]  T. Bramer,et al.  Catanionic mixtures involving a drug: a rather general concept that can be utilized for prolonged drug release from gels. , 2006, Journal of pharmaceutical sciences.

[64]  P. Couvreur,et al.  Nanoparticles in cancer therapy and diagnosis. , 2002, Advanced drug delivery reviews.

[65]  C. van Nostrum,et al.  Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery. , 2007, Journal of Controlled Release.

[66]  K. Kono,et al.  Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[67]  Heike Bunjes,et al.  Crystallization tendency and polymorphic transitions in triglyceride nanoparticles , 1996 .

[68]  Frank Bates,et al.  Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[69]  Thomas Zemb,et al.  Self-assembly of regular hollow icosahedra in salt-free catanionic solutions , 2001, Nature.

[70]  James R. Dewald,et al.  A New Class of Polymers: Starburst-Dendritic Macromolecules , 1985 .

[71]  Willis,et al.  Ligand-targeted liposomes. , 1998, Advanced drug delivery reviews.

[72]  A. Caminade,et al.  Phosphorus-containing dendrimers bearing galactosylceramide analogs: self-assembly properties. , 2002, Chemical communications.

[73]  J. Grossiord,et al.  Release of antiseptics from the aqueous compartments of a w/o/w multiple emulsion. , 2005, International journal of pharmaceutics.

[74]  P. Heegaard,et al.  Dendrimers in drug research. , 2004, Chemical Society reviews.

[75]  M. Vanauker,et al.  Immuno-targeting of nonionic surfactant vesicles to inflammation. , 2007, International journal of pharmaceutics.

[76]  K. Edwards,et al.  Catanionic Drug–Surfactant Mixtures: Phase Behavior and Sustained Release from Gels , 2003, Pharmaceutical Research.

[77]  G. M. Whitesides,et al.  Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren , 1998 .

[78]  Mónica Rosa,et al.  The association of DNA and stable catanionic amino acid-based vesicles , 2007 .

[79]  E. Perez,et al.  Design of original bioactive formulations based on sugar-surfactant/non-steroidal anti-inflammatory catanionic self-assemblies: a new way of dermal drug delivery. , 2007, Chemistry.

[80]  N. Yui,et al.  Modulatory factors on temperature-synchronized degradation of dextran grafted with thermoresponsive polymers and their hydrogels. , 2001, Biomacromolecules.

[81]  K. Westesen,et al.  Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction , 1993 .

[82]  F. Szoka,et al.  In vitro gene delivery by degraded polyamidoamine dendrimers. , 1996, Bioconjugate chemistry.

[83]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[84]  Fenghua Meng,et al.  Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[85]  A. Khademhosseini,et al.  Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology , 2006 .

[86]  A. Seelig,et al.  IRIV-adjuvanted hepatitis A vaccine: in vivo absorption and biophysical characterization. , 2000, Progress in lipid research.

[87]  I. Rico-Lattes,et al.  Physical study of the arrangement of pure catanionic glycolipids and interaction with phospholipids, in support of the optimisation of anti-HIV therapies , 2007 .

[88]  Kazunori Kataoka,et al.  Block copolymer micelles as long-circulating drug vehicles , 1995 .

[89]  Ron,et al.  Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. , 1998, Advanced drug delivery reviews.

[90]  E. Perez,et al.  Synthesis and anti-HIV activity of catanionic analogs of galactosylceramide , 1999 .

[91]  R. Duncan,et al.  Pharmaceutical and biological characterisation of a doxorubicin-polymer conjugate (PK1) entrapped in sorbitan monostearate Span 60 niosomes , 1997 .

[92]  Gulik-Krzywicki,et al.  Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions , 1999, Science.

[93]  E. Meijer,et al.  Bengal rose@dendritic box , 1996 .

[94]  A. Caminade,et al.  PREPARATION OF WATER-SOLUBLE CATIONIC PHOSPHORUS-CONTAINING DENDRIMERS AS DNA TRANSFECTING AGENTS , 1999 .

[95]  A. Caminade,et al.  Dendrimers and DNA: combinations of two special topologies for nanomaterials and biology. , 2008, Chemistry.

[96]  R. Müller,et al.  Nanostructured lipid matrices for improved microencapsulation of drugs. , 2002, International journal of pharmaceutics.

[97]  Ijeoma F. Uchegbu,et al.  Non-ionic surfactant based vesicles (niosomes) in drug delivery , 1998 .

[98]  J. Z. Hilt,et al.  Configurational biomimesis in drug delivery: molecular imprinting of biologically significant molecules. , 2004, Advanced drug delivery reviews.

[99]  Gert Storm,et al.  Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system , 1995 .

[100]  W. Binder,et al.  Cationic Surfactants with Counterions of Glucuronate Glycosides , 1997 .

[101]  C. Tondre,et al.  Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylammonium tosylate/water system. , 2002, Journal of colloid and interface science.

[102]  K. Mäder,et al.  Solid lipid nanoparticles: production, characterization and applications. , 2001, Advanced drug delivery reviews.

[103]  T. Okano,et al.  Preparation of micelle-forming polymer-drug conjugates. , 1992, Bioconjugate chemistry.

[104]  Robert J. Lee,et al.  Formulation kit for liposomal doxorubicin composed of lyophilized liposomes. , 2003, Anticancer research.

[105]  I. Rico-Lattes,et al.  New Catanionic Glycolipids. 1. Synthesis, Characterization, and Biological Activity of Double-Chain and Gemini Catanionic Analogues of Galactosylceramide (galβ1cer) , 1999 .

[106]  I. Rico-Lattes,et al.  Sugar-derived tricatenar catanionic surfactant: synthesis, self-assembly properties, and hydrophilic probe encapsulation by vesicles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[107]  Akira Yamamoto,et al.  Penetration and enzymatic barriers to peptide and protein absorption , 1989 .

[108]  E. Meijer,et al.  Encapsulation of Guest Molecules into a Dendritic Box , 1994, Science.

[109]  P. Couvreur,et al.  Nanomedicines: A New Approach for the Treatment of Serious Diseases , 2007 .

[110]  A. Polidori,et al.  Synthesis of double-chain glycolipids derived from aspartic acid : Preliminary investigation of their colloidal behavior , 1994 .

[111]  Shuguang Zhang,et al.  Emerging biological materials through molecular self-assembly. , 2002, Biotechnology advances.

[112]  M. Bally,et al.  In Vitro and in Vivo Characterization of Doxorubicin and Vincristine Coencapsulated within Liposomes through Use of Transition Metal Ion Complexation and pH Gradient Loading , 2004, Clinical Cancer Research.

[113]  F. Szoka,et al.  The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes , 1997, Gene Therapy.

[114]  Patrick Couvreur,et al.  Controlled drug delivery with nanoparticles : current possibilities and future trends , 1995 .

[115]  V. Torchilin,et al.  Structure and design of polymeric surfactant-based drug delivery systems. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[116]  R. Müller,et al.  Solid lipid nanoparticles (SLN) : an alternative colloidal carrier system for controlled drug delivery , 1995 .

[117]  T. Okano,et al.  “On–Off” Thermocontrol of Solute Transport. I. Temperature Dependence of Swelling of N-Isopropylacrylamide Networks Modified with Hydrophobic Components in Water , 1991, Pharmaceutical Research.

[118]  S. Talegaonkar,et al.  Vesicular systems: An overview , 2006 .

[119]  J. Moreau,et al.  Action of octylglucoside on non-ionic monoalkyl amphiphile-cholesterol vesicles: study of the solubilization mechanism , 1990 .