A wireless capsule robot with spiral legs for human intestine

As an attractive alternative to traditional diagnostic techniques, wireless capsule endoscopy (WCE) can be considered a disruptive technology.

[1]  Jin-Ho Cho,et al.  Small intestinal model for electrically propelled capsule endoscopy , 2011, Biomedical engineering online.

[2]  Peng Gao,et al.  A robotic endoscope based on minimally invasive locomotion and wireless techniques for human colon , 2011, The international journal of medical robotics + computer assisted surgery : MRCAS.

[3]  M. Sitti,et al.  A motorized anchoring mechanism for a tethered capsule robot using fibrillar adhesives for interventions in the esophagus , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[4]  David S. Barrett,et al.  Tomorrow's surgery: Micromotors and microrobots for minimally invasive procedures , 1998 .

[5]  Paolo Dario,et al.  A New Mechanism for Mesoscale Legged Locomotion in Compliant Tubular Environments , 2009, IEEE Transactions on Robotics.

[6]  Paolo Dario,et al.  Evaluation of friction enhancement through soft polymer micro-patterns in active capsule endoscopy , 2010 .

[7]  Metin Sitti,et al.  A Legged Anchoring Mechanism for Capsule Endoscopes Using Micropatterned Adhesives , 2008, IEEE Transactions on Biomedical Engineering.

[8]  Yan Guozheng,et al.  Efficiency optimization of wireless power transmission systems for active capsule endoscopes. , 2011, Physiological measurement.

[9]  J.K. Cloete,et al.  A study of an Archimedes spiral antenna , 1994, Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting.

[10]  Jong-Oh Park,et al.  Paddling based Microrobot for Capsule Endoscopes , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[11]  M. Sitti,et al.  Miniature Endoscopic Capsule Robot using Biomimetic Micro-Patterned Adhesives , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[12]  Joel W. Burdick,et al.  Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscope , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[13]  Guozheng Yan,et al.  Design of a wireless anchoring and extending micro robot system for gastrointestinal tract , 2013, The international journal of medical robotics + computer assisted surgery : MRCAS.

[14]  D. Thompson,et al.  A History of Greek Mathematics , 1922, Nature.

[15]  David Zarrouk,et al.  Conditions for Worm-Robot Locomotion in a Flexible Environment: Theory and Experiments , 2012, IEEE Transactions on Biomedical Engineering.

[16]  Pietro Valdastri,et al.  Magnetic Mechanism for Wireless Capsule Biopsy , 2012 .

[17]  G. Yan,et al.  A Wireless Robotic Endoscope for Gastrointestine , 2008, IEEE Transactions on Robotics.

[18]  P. Dario,et al.  Design and Fabrication of a Motor Legged Capsule for the Active Exploration of the Gastrointestinal Tract , 2008, IEEE/ASME Transactions on Mechatronics.

[19]  Guozheng Yan,et al.  A Novel JPEG-based Wireless Capsule Endoscope. , 2010, Biomedical instrumentation & technology.

[20]  Jong-Oh Park,et al.  Inchworm-Like Microrobot for Capsule Endoscope , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[21]  A. Cuschieri,et al.  The impact of technologies on minimally invasive therapy , 1997, Surgical Endoscopy.

[22]  Paolo Dario,et al.  Bio-inspired solutions for locomotion in the gastrointestinal tract: background and perspectives , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.