Modeling and Visualization for the Fragment Molecular Orbital Method with the Graphical User Interface FU, and Analyses of Protein-Ligand Binding

[1]  Kazuo Kitaura,et al.  The importance of three-body terms in the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[2]  Kaori Fukuzawa,et al.  Developments and applications of ABINIT-MP software based on the fragment molecular orbital method , 2006 .

[3]  K. Kitaura,et al.  The use of many-body expansions and geometry optimizations in fragment-based methods. , 2014, Accounts of chemical research.

[4]  Kazuo Kitaura,et al.  CHAPTER 1 – Theoretical development of the fragment molecular orbital (FMO) method , 2006 .

[5]  Mark S. Gordon,et al.  A new hierarchical parallelization scheme: Generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO) , 2004, J. Comput. Chem..

[6]  Kazuo Kitaura,et al.  Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. , 2007, The journal of physical chemistry. A.

[7]  Michael J. Bodkin,et al.  The Fragment Molecular Orbital Method Reveals New Insight into the Chemical Nature of GPCR-Ligand Interactions , 2016, J. Chem. Inf. Model..

[8]  Kaori Fukuzawa,et al.  A configuration analysis for fragment interaction , 2005 .

[9]  K. Kitaura,et al.  Subsystem Analysis for the Fragment Molecular Orbital Method and Its Application to Protein-Ligand Binding in Solution. , 2016, The journal of physical chemistry. A.

[10]  K. Kitaura,et al.  Fragment molecular orbital method: an approximate computational method for large molecules , 1999 .

[11]  Spencer R Pruitt,et al.  Fragmentation methods: a route to accurate calculations on large systems. , 2012, Chemical reviews.

[12]  Kazuo Kitaura,et al.  Cluster hydration model for binding energy calculations of protein-ligand complexes. , 2009, The journal of physical chemistry. B.

[13]  Kazuo Kitaura,et al.  Exploring chemistry with the fragment molecular orbital method. , 2012, Physical chemistry chemical physics : PCCP.

[14]  T. Nakano,et al.  Fragment interaction analysis based on local MP2 , 2007 .

[15]  Hiroshi Chuman,et al.  QSAR Study of Cyclic Urea Type HIV‐1 PR Inhibitors Using Ab Initio MO Calculation of Their Complex Structures with HIV‐1 PR , 2008 .

[16]  Yuto Komeiji,et al.  Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. , 2014, Physical chemistry chemical physics : PCCP.

[17]  Kazuo Kitaura,et al.  Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method. , 2012, The Journal of chemical physics.

[18]  Ewa I. Chudyk,et al.  Fragment Molecular Orbital Method Applied to Lead Optimization of Novel Interleukin-2 Inducible T-Cell Kinase (ITK) Inhibitors. , 2016, Journal of medicinal chemistry.

[19]  Hui Li,et al.  Energy gradients in combined fragment molecular orbital and polarizable continuum model (FMO/PCM) calculation , 2009, J. Comput. Chem..

[20]  Mark Whittaker,et al.  Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method , 2011, J. Cheminformatics.

[21]  Kazuo Kitaura,et al.  Pair interaction energy decomposition analysis , 2007, J. Comput. Chem..

[22]  Yuri Alexeev,et al.  GAMESS as a free quantum-mechanical platform for drug research. , 2012, Current topics in medicinal chemistry.

[23]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[24]  Jiali Gao,et al.  Toward a Molecular Orbital Derived Empirical Potential for Liquid Simulations , 1997 .

[25]  K. Kitaura,et al.  Energy decomposition analysis in solution based on the fragment molecular orbital method. , 2012, The journal of physical chemistry. A.

[26]  Kazuo Kitaura,et al.  Role of the key mutation in the selective binding of avian and human influenza hemagglutinin to sialosides revealed by quantum-mechanical calculations. , 2010, Journal of the American Chemical Society.

[27]  Hui Li,et al.  The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO) , 2006, J. Comput. Chem..

[28]  J. Ladik,et al.  Investigation of the interaction between molecules at medium distances: I. SCF LCAO MO supermolecule, perturbational and mutually consistent calculations for two interacting HF and CH2O molecules , 1975 .

[29]  Junwei Zhang,et al.  VISCANA: Visualized Cluster Analysis of Protein-Ligand Interaction Based on the ab Initio Fragment Molecular Orbital Method for Virtual Ligand Screening , 2006, J. Chem. Inf. Model..

[30]  Masahiko Suenaga,et al.  Development of GUI for GAMESS / FMO Calculation , 2008 .

[31]  Makoto Taiji,et al.  Assessment and acceleration of binding energy calculations for protein–ligand complexes by the fragment molecular orbital method , 2015, J. Comput. Chem..

[32]  Kazuo Kitaura,et al.  Molecular recognition mechanism of FK506 binding protein: An all‐electron fragment molecular orbital study , 2007, Proteins.

[33]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[34]  K. Kitaura,et al.  Mathematical Formulation of the Fragment Molecular Orbital Method , 2011 .