Multimodal Non-Contact Luminescence Thermometry with Cr-Doped Oxides

Luminescence methods for non-contact temperature monitoring have evolved through improvements of hardware and sensor materials. Future advances in this field rely on the development of multimodal sensing capabilities of temperature probes and extend the temperature range across which they operate. The family of Cr-doped oxides appears particularly promising and we review their luminescence characteristics in light of their application in non-contact measurements of temperature over the 5–300 K range. Multimodal sensing utilizes the intensity ratio of emission lines, their wavelength shift, and the scintillation decay time constant. We carried out systematic studies of the temperature-induced changes in the luminescence of the Cr3+-doped oxides Al2O3, Ga2O3, Y3Al5O12, and YAlO3. The mechanism responsible for the temperature-dependent luminescence characteristic is discussed in terms of relevant models. It is shown that the thermally-induced processes of particle exchange, governing the dynamics of Cr3+ ion excited state populations, require low activation energy. This then translates into tangible changes of a luminescence parameter with temperature. We compare different schemes of temperature sensing and demonstrate that Ga2O3-Cr is a promising material for non-contact measurements at cryogenic temperatures. A temperature resolution better than ±1 K can be achieved by monitoring the luminescence intensity ratio (40–140 K) and decay time constant (80–300 K range).

[1]  M. Richter,et al.  Two-dimensional thermometry using temperature-induced line shifts of ZnO:Zn and ZnO:Ga fluorescence. , 2008, Optics letters.

[2]  G. Huber,et al.  The effect of the crystal field strength on the optical spectra of Cr3+ in gallium garnet laser crystals , 1985 .

[3]  Kenneth T. V. Grattan,et al.  Temperature dependence of YAG:Cr3+ fluorescence lifetime up to 550 K , 1994 .

[4]  Kenneth T. V. Grattan,et al.  Sapphire-ruby single-crystal fibre for application in high temperature optical fibre thermometers: studies at temperatures up to 1500 °C , 2001 .

[5]  M. Brik,et al.  Spin-Forbidden Transitions in the Spectra of Transition Metal Ions and Nephelauxetic Effect , 2016 .

[6]  M. Cates,et al.  Phosphor thermometry at cryogenic temperatures , 1997 .

[7]  Konstantinos Kontis,et al.  Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications , 2008, Sensors.

[8]  C. Duan,et al.  Luminescent properties of chromium(III)-doped lithium aluminate for temperature sensing , 2014 .

[9]  M. Mancinelli,et al.  Ruby-spheres as pressure gauge for optically transparent high pressure cells , 2001 .

[10]  B. Dunn,et al.  Optical properties of β-Ga2O3:Cr3+ single crystals for tunable laser applications , 1987 .

[12]  D. Ragan,et al.  Calibration of the ruby R1 and R2 fluorescence shifts as a function of temperature from 0 to 600 K , 1992 .

[13]  M. Yamaga,et al.  Electron paramagnetic resonance and optical spectra of Cr3+-doped YAlO3 , 1993 .

[14]  D. Murata,et al.  Ratiometric Luminescent Thermometers with Customized Phase-Transition Driven Fingerprint in Perovskite Oxides. , 2019, ACS applied materials & interfaces.

[15]  I. Klimant,et al.  Optical temperature sensing using a new thermographic phosphor , 2015 .

[16]  H. Hofsäss,et al.  Demonstration of Temperature Dependent Energy Migration in Dual-Mode YVO4: Ho3+/Yb3+ Nanocrystals for Low Temperature Thermometry , 2016, Scientific Reports.

[17]  B. Atakan,et al.  Light emitting diode excitation of Cr3+:Al2O3 as thermographic phosphor: experiments and measurement strategy , 2009 .

[18]  Kenneth T. V. Grattan,et al.  Ruby-based decay-time thermometry: effect of probe size on extended measurement range (77–800 K) , 1997 .

[19]  E. Toba,et al.  Characteristics of chromium doped spinel crystals for a fiber-optic thermometer application , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[20]  J. Colletier,et al.  Temperature-dependent macromolecular X-ray crystallography , 2010, Acta crystallographica. Section D, Biological crystallography.

[21]  T. Yeom,et al.  Electron paramagnetic resonance characterization of Cr3+ impurities in a β-Ga2O3 single crystal , 2003 .

[22]  S. Adachi,et al.  Photoluminescence spectroscopy and energy-level analysis of metal-organic-deposited Ga2O3:Cr3+ films , 2012 .

[23]  L. Carlos,et al.  Self-Calibrated Double Luminescent Thermometers Through Upconverting Nanoparticles , 2019, Front. Chem..

[24]  P. Haro-González,et al.  Fluorescence intensity ratio and lifetime thermometry of praseodymium phosphates for temperature sensing , 2018, Journal of Luminescence.

[25]  R. Powell,et al.  Spectroscopic properties of alexandrite crystals II , 1987 .

[26]  A. Wagner,et al.  Non-Contact Luminescence Lifetime Microthermometry using Scintillation Sensors , 2017 .

[27]  Hakan Atakisi,et al.  Lifetimes and spatio-temporal response of protein crystals in intense X-ray microbeams , 2017, IUCrJ.

[28]  O. Wolfbeis,et al.  Luminescent probes and sensors for temperature. , 2013, Chemical Society reviews.

[29]  Zhang,et al.  Temperature dependences of fluorescence lifetimes in Cr3+-doped insulating crystals. , 1993, Physical review. B, Condensed matter.

[30]  Zhiyi Zhang,et al.  FLUORESCENT-BASED LIFETIME MEASUREMENT THERMOMETER FOR USE AT SUBROOM TEMPERATURES (200-300 K) , 1995 .

[31]  Alika Khare,et al.  Optical and structural characterization of pulsed laser deposited ruby thin films for temperature sensing application , 2013 .

[32]  M. Berkowski,et al.  Photoluminescence studies of Mn4+ ions in YAlO3 crystals at ambient and high pressure , 2006 .

[33]  John C. Walling,et al.  Tunable alexandrite lasers , 1980 .

[34]  M. Brik,et al.  Critical Review—A Review of the Electronic Structure and Optical Properties of Ions with d3 Electron Configuration (V2+, Cr3+, Mn4+, Fe5+) and Main Related Misconceptions , 2018 .

[35]  A. Dreizler,et al.  Gd3Ga5O12:Cr—a phosphor for two-dimensional thermometry in internal combustion engines , 2011 .

[36]  P. Childs,et al.  Review of temperature measurement , 2000 .

[37]  E. Homeyer,et al.  Diamond contact-less micrometric temperature sensors , 2015 .

[38]  I. Klimant,et al.  Preparation and Characterization of Chromium(III)-Activated Yttrium Aluminum Borate: A New Thermographic Phosphor for Optical Sensing and Imaging at Ambient Temperatures , 2010, The journal of physical chemistry. C, Nanomaterials and interfaces.

[39]  A. Dreizler,et al.  Phosphor thermometry: A comparison of the luminescence lifetime and the intensity ratio approach , 2013 .

[40]  Zhang,et al.  Temperature dependence of the YAG:Cr3+ fluorescence lifetime over the range 77 to 900 K. , 1995, Physical review. B, Condensed matter.

[41]  D. Gamelin,et al.  Tunable dual emission in doped semiconductor nanocrystals. , 2010, Nano letters.

[42]  Henry van den Bedem,et al.  Conformational variation of proteins at room temperature is not dominated by radiation damage , 2017, Journal of synchrotron radiation.

[43]  M. Grinberg 2E → 4A2 fluorescence of Cr3+ in high and intermediate field garnets , 1993 .

[44]  A. Wagner,et al.  Non-contact luminescence lifetime cryothermometry for macromolecular crystallography , 2017, Journal of synchrotron radiation.

[45]  田辺 行人,et al.  Multiplets of transition-metal ions in crystals , 1970 .

[46]  B. Weinstein Ruby thermometer for cryobaric diamond‐anvil cell , 1986 .

[47]  David R. Clarke,et al.  Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry , 2009 .

[48]  B. Viana,et al.  MgTiO3:Mn4+ a multi-reading temperature nanoprobe , 2018, RSC advances.

[49]  E. Bouwman,et al.  Mixed-Lanthanoid Metal-Organic Framework for Ratiometric Cryogenic Temperature Sensing. , 2015, Inorganic chemistry.

[50]  M. Frotscher,et al.  A survey of phosphors novel for thermography , 2011 .

[51]  Fangyuan Sun,et al.  Anisotropic thermal conductivity in single crystal β-gallium oxide , 2015 .

[52]  Mool C. Gupta,et al.  Spectroscopy of BeAl(2)O(4):Cr(3+) with application to high-temperature sensing. , 2010, Applied optics.

[53]  L. Carlos,et al.  Lanthanide‐Based Thermometers: At the Cutting‐Edge of Luminescence Thermometry , 2018, Advanced Optical Materials.

[54]  P. Dłużewski,et al.  Hole Trapping Process and Highly Sensitive Ratiometric Thermometry over a Wide Temperature Range in Pr3+-Doped Na2La2Ti3O10 Layered Perovskite Microcrystals. , 2019, The journal of physical chemistry. A.

[55]  A. Popa,et al.  Optical and electron paramagnetic resonance studies of Cr doped Ga2O3 nanoparticles , 2015 .

[56]  J. Eldridge Luminescence decay-based Y2O3:Er phosphor thermometry: Temperature sensitivity governed by multiphonon emission with an effective phonon energy transition , 2019, Journal of Luminescence.

[57]  D. F. Nelson,et al.  Relation between Absorption and Emission in the Region of the R Lines of Ruby , 1965 .

[58]  Xiaohong Yan,et al.  Optical temperature sensing of rare-earth ion doped phosphors , 2015 .

[59]  S. Wade,et al.  Fluorescence intensity ratio technique for optical fiber point temperature sensing , 2003 .

[60]  Y. Liu,et al.  Two-dimensional thermographic phosphor thermometry in a cryogenic environment , 2016 .

[61]  J. Eldridge,et al.  Fiber optic thermometer using Cr-doped GdAlO3 broadband emission decay , 2015 .

[62]  S. W. Allisona Remote thermometry with thermographic phosphors : Instrumentation and applications , 1997 .

[63]  Kenneth T. V. Grattan,et al.  Ruby decay‐time fluorescence thermometer in a fiber‐optic configuration , 1988 .

[64]  D. Mccumber,et al.  Linewidth and Temperature Shift of the R Lines in Ruby , 1963 .

[65]  A. Dreizler,et al.  On surface temperature measurements with thermographic phosphors: A review , 2013 .

[66]  R. Powell Physics of Solid-State Laser Materials , 1998 .

[67]  E. Toba,et al.  Fiber-optic thermometer using Cr-doped YAlO3 sensor head , 2003 .

[68]  Kenneth T. V. Grattan,et al.  Fiber‐optic high‐temperature sensor based on the fluorescence lifetime of alexandrite , 1992 .

[69]  M. Kovalenko,et al.  High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites , 2019, Nature Materials.

[70]  E. Garman,et al.  X-ray radiation damage to biological macromolecules: further insights. , 2017, Journal of Synchrotron Radiation.

[71]  R. Gamernyk,et al.  Megahertz non-contact luminescence decay time cryothermometry by means of ultrafast PbI2 scintillator , 2019, Scientific Reports.

[72]  A. Wagner,et al.  Characterisation of tungstate and molybdate crystals ABO4 (A = Ca, Sr, Zn, Cd; B = W, Mo) for luminescence lifetime cryothermometry , 2018, Materialia.

[73]  A. D. Ellis,et al.  Luminescence of YAG:Dy and YAG:Dy,Er crystals to 1700 °C , 2020, Measurement Science and Technology.

[74]  Luís D Carlos,et al.  Thermometry at the nanoscale. , 2015, Nanoscale.

[75]  T. E. Varitimos,et al.  Optical spectra and relaxation of Cr3+ ions in YAlO3 , 1974 .

[76]  J. Ueda,et al.  Ratiometric Optical Thermometer Based on Dual Near-Infrared Emission in Cr3+-Doped Bismuth-Based Gallate Host , 2016 .

[77]  H. Seo,et al.  A novel optical thermometry based on the energy transfer from charge transfer band to Eu3+-Dy3+ ions , 2017, Scientific Reports.

[78]  R. Devillers,et al.  Fluorescence temperature sensing on rotating samples in the cryogenic range , 1999 .

[79]  H. Moser,et al.  Radiation-induced melting in coherent X-ray diffractive imaging at the nanoscale , 2011, Journal of synchrotron radiation.

[80]  Kenneth T. V. Grattan,et al.  Ruby fluorescence wavelength division fiber‐optic temperature sensor , 1987 .