Forecasting Value-at-Risk in turbulent stock markets via the local regularity of the price process

A new computational approach based on the pointwise regularity exponent of the price time series is proposed to estimate Value at Risk. The forecasts obtained are compared with those of two largely used methodologies: the variance-covariance method and the exponentially weighted moving average method. Our findings show that in two very turbulent periods of financial markets the forecasts obtained using our algorithm decidedly outperform the two benchmarks, providing more accurate estimates in terms of both unconditional coverage and independence and magnitude of losses.

[1]  Dark Jonathan Graeme Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk , 2010 .

[2]  S. Bianchi,et al.  Pointwise Regularity Exponents and Well-Behaved Residuals in Stock Markets , 2011 .

[3]  Richard D. F. Harris,et al.  Forecasting value at risk allowing for time variation in the variance and kurtosis of portfolio returns , 2002 .

[4]  C. Perignon,et al.  The Level and Quality of Value-at-Risk Disclosure by Commercial Banks , 2009 .

[5]  Murad S. Taqqu,et al.  MULTIFRACTIONAL PROCESSES WITH RANDOM EXPONENT , 2005 .

[6]  F. Viens,et al.  Estimation and pricing under long-memory stochastic volatility , 2012 .

[7]  Susan Thomas,et al.  Selection of Value-at-Risk models , 2003 .

[8]  Antoine Ayache,et al.  Continuous Gaussian Multifractional Processes with Random Pointwise Hölder Regularity , 2011, 1109.1617.

[9]  Jean-Philippe Bouchaud,et al.  The subtle nature of financial random walks. , 2005, Chaos.

[10]  S. Jaffard,et al.  Wavelet construction of Generalized Multifractional processes. , 2007 .

[11]  S. Bianchi,et al.  Modeling stock prices by multifractional Brownian motion: an improved estimation of the pointwise regularity , 2013 .

[12]  T. Di Matteo,et al.  On the statistics of scaling exponents and the multiscaling value at risk , 2020, The European Journal of Finance.

[13]  A. Ayache,et al.  Stochastic Volatility and Multifractional Brownian Motion , 2012 .

[14]  Charles Goodhart,et al.  The Basel Committee on Banking Supervision , 2011 .

[15]  Sergio Bianchi,et al.  Multifractional processes in finance , 2014, Risk Decis. Anal..

[16]  Anna Maria Palazzo,et al.  Fast and unbiased estimator of the time-dependent Hurst exponent. , 2018, Chaos.

[17]  A. Alizadeh,et al.  Dynamics of credit spread moments of European corporate bond indexes , 2013 .

[18]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[19]  Emmanuel Bacry,et al.  Continuous cascade models for asset returns , 2008 .

[20]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[21]  S. Mittnik,et al.  The Volatility of Realized Volatility , 2005 .

[22]  B. M. Tabak,et al.  The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient , 2004 .

[23]  Jean-François Coeurjolly,et al.  Identification of multifractional Brownian motion , 2005 .

[24]  Sean D. Campbell A review of backtesting and backtesting procedures , 2005 .

[25]  Charles S. Tapiero,et al.  The Price of Granularity and Fractional Finance , 2015, Risk Decis. Anal..

[26]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[27]  M. Holschneider,et al.  Local regularity analysis of strata heterogeneities from sonic logs , 2010 .

[28]  Alexandros Gabrielsen Modelling the Dynamics of Credit Spreads of European Corporate Bond Indices , 2010 .

[29]  T. Ovaert,et al.  Value‐at‐risk: Techniques to account for leptokurtosis and asymmetric behavior in returns distributions , 2010 .

[30]  Matthieu Garcin Fractal analysis of the multifractality of foreign exchange rates , 2019 .

[31]  Sergio Bianchi,et al.  Pathwise Identification Of The Memory Function Of Multifractional Brownian Motion With Application To Finance , 2005 .

[32]  Matthieu Garcin,et al.  Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates , 2017 .

[33]  Patrick Cheridito,et al.  Fractional Ornstein-Uhlenbeck processes , 2003 .

[34]  Jacques Lévy Véhel,et al.  Local Hölder Regularity-Based Modeling of RR Intervals , 2008, 2008 21st IEEE International Symposium on Computer-Based Medical Systems.

[35]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[36]  Jacques Istas,et al.  Identifying the multifractional function of a Gaussian process , 1998 .

[37]  Giovani L. Vasconcelos,et al.  Long-range correlations and nonstationarity in the Brazilian stock market , 2003 .

[38]  Patrick Flandrin,et al.  From Stationarity to Self-similarity, and Back: Variations on the Lamperti Transformation , 2003 .

[39]  Juri Marcucci Forecasting Stock Market Volatility with Regime-Switching GARCH Models , 2005 .

[40]  A. Vries Value at Risk , 2019, Derivatives.

[41]  Armin Bunde,et al.  Improved risk estimation in multifractal records: Application to the value at risk in finance. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Massimiliano Frezza A fractal-based approach for modeling stock price variations. , 2018, Chaos.

[43]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[44]  Pierre Raphaël Bertrand,et al.  Overfitting of Hurst estimators for multifractional Brownian motion: A fitting test advocating simple models , 2018, Risk Decis. Anal..

[45]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[46]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[47]  Christophe Pérignon,et al.  The Level and Quality of Value-at-Risk Disclosure by Commercial Banks , 2010 .

[48]  F. D. Rosiers,et al.  Determining The Value-at-risk In The Shadow Of The Power Law: The Case Of The SP-500 Index , 2010 .

[49]  Sylvain Corlay,et al.  MULTIFRACTIONAL STOCHASTIC VOLATILITY MODELS , 2014 .

[50]  G. Papanicolaou,et al.  Wavelet Based Estimation of Local Kolmogorov Turbulence , 2018 .

[51]  S. Bianchi,et al.  MULTIFRACTIONAL PROPERTIES OF STOCK INDICES DECOMPOSED BY FILTERING THEIR POINTWISE HÖLDER REGULARITY , 2008 .

[52]  Woojin Chang,et al.  Multifractal Value at Risk model , 2016 .

[53]  Niklas Wagner,et al.  Multifractality and value-at-risk forecasting of exchange rates , 2014 .

[54]  Anders Wilhelmsson Value at Risk with time varying variance, skewness and kurtosis--the NIG-ACD model , 2009 .

[55]  Massimiliano Frezza Modeling the time-changing dependence in stock markets , 2012 .

[56]  J. Coeurjolly,et al.  Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths , 2001 .

[57]  Matthieu Garcin HURST EXPONENTS AND DELAMPERTIZED FRACTIONAL BROWNIAN MOTIONS , 2019, International Journal of Theoretical and Applied Finance.

[58]  Sergio Bianchi,et al.  Efficient Markets and Behavioral Finance: a Comprehensive multifractional Model , 2015, Adv. Complex Syst..

[59]  A. Benassi,et al.  Identification of the Hurst Index of a Step Fractional Brownian Motion , 2000 .

[60]  S. Gaci,et al.  Heterogeneities characterization from velocity logs using multifractional Brownian motion , 2011 .

[61]  Tae-Hwan Kim,et al.  Modeling Autoregressive Conditional Skewness and Kurtosis with Multi-Quantile CAViaR , 2008, SSRN Electronic Journal.

[62]  L' Italia all' alba del Secolo XX.@@@La Citta di Napoli, con un' Appendice su le Forze Idrauliche dell' Italia e la Loro Utilizzazione. , 1902 .

[63]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[64]  Forecasting Value-at-Risk with Time-Varying Variance, Skewness and Kurtosis in an Exponential Weighted Moving Average Framework , 2012, 1206.1380.

[65]  F. Lillo,et al.  The Long Memory of the Efficient Market , 2003, cond-mat/0311053.