Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth

We report on a method of synthesizing arrays of individually seeded nanowires. An electron beam lithography and metal lift-off method was used to pattern InP(111)B substrates with catalysing gold particles. Vertical InP(111)B nanowire arrays were then grown from the gold particles, using metal-organic vapour phase epitaxy. The lithographic nature of the method allows individual control over each nanowire. Possible applications for such deterministic and uniform arrays include producing arrays of nanowire devices, two-dimensional photonic band gap structures and field emission displays, amongst others.

[1]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[2]  Young Hee Lee,et al.  Fully sealed, high-brightness carbon-nanotube field-emission display , 1999 .

[3]  Lars Samuelson,et al.  Single-electron transistors in heterostructure nanowires. , 2003 .

[4]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[5]  Photonic-band-gap properties of two-dimensional lattices of Si nanopillars , 2002 .

[6]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[7]  D. Appell Wired for success , 2002 .

[8]  Lars Samuelson,et al.  Nanowire resonant tunneling diodes , 2002 .

[9]  M. Bañobre‐López,et al.  Magnetic properties of chromium (III) oxide nanoparticles , 2003 .

[10]  Pengfei Wu,et al.  Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes , 2003 .

[11]  T. Katsuyama,et al.  SITE-CONTROLLED GROWTH OF NANOWHISKERS , 1995 .

[12]  Lars Samuelson,et al.  Size-, shape-, and position-controlled GaAs nano-whiskers , 2001 .

[13]  C. Spindt,et al.  Physical properties of thin‐film field emission cathodes with molybdenum cones , 1976 .

[14]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[15]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[16]  M. L. Simpson,et al.  Large-scale synthesis of arrays of high-aspect-ratio rigid vertically aligned carbon nanofibres , 2003 .

[17]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[18]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[19]  Kenji Hiruma,et al.  Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .

[20]  Ka Wai Wong,et al.  ELECTRON FIELD EMISSION FROM SILICON NANOWIRES , 1999 .

[21]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[22]  G. Robertshaw,et al.  Kinetics of thermal desorption and thermal conversion of adsorbates: AES studies , 1978 .

[23]  Harry E. Ruda,et al.  Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy , 2002 .

[24]  Harry E. Ruda,et al.  Growth of silicon nanowires via gold/silane vapor–liquid-solid reaction , 1997 .