Coupled Nonautonomous Oscillators

[1]  Tomislav Stankovski,et al.  Tackling the Inverse Problem for Non-Autonomous Systems: Application to the Life Sciences , 2013 .

[2]  Aneta Stefanovska,et al.  Chronotaxic systems: a new class of self-sustained nonautonomous oscillators. , 2013, Physical review letters.

[3]  Aneta Stefanovska,et al.  Mean-field and mean-ensemble frequencies of a system of coupled oscillators , 2013, 1302.7164.

[4]  E. Michelakis,et al.  Mitochondria in vascular health and disease. , 2013, Annual review of physiology.

[5]  A Stefanovska,et al.  Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths. , 2012, Physical review letters.

[6]  A. Duggento,et al.  Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Aneta Stefanovska,et al.  Inference of time-evolving coupled dynamical systems in the presence of noise. , 2012, Physical review letters.

[8]  P. Rabinovitch,et al.  Mitochondria and cardiovascular aging. , 2012, Circulation research.

[9]  Sang Hoon Lee,et al.  Phase-shift inversion in oscillator systems with periodically switching couplings. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  A. Stefanovska,et al.  Kuramoto model with time-varying parameters. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Peter E. Kloeden,et al.  Nonautonomous Dynamical Systems , 2011 .

[12]  E. Montbrió,et al.  Shear diversity prevents collective synchronization. , 2011, Physical review letters.

[13]  I. Daubechies,et al.  Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool , 2011 .

[14]  Hyunsuk Hong,et al.  Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators. , 2011, Physical review letters.

[15]  A Stefanovska,et al.  Detecting the harmonics of oscillations with time-variable frequencies. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  S. Kuznetsov,et al.  Collective phase chaos in the dynamics of interacting oscillator ensembles. , 2010, Chaos.

[17]  T. Vadivasova,et al.  Stochastic self-sustained oscillations of non-autonomous systems , 2010 .

[18]  Antonis A Armoundas,et al.  Spatio-temporal oscillations of individual mitochondria in cardiac myocytes reveal modulation of synchronized mitochondrial clusters , 2010, Proceedings of the National Academy of Sciences.

[19]  Milan Palus,et al.  Detecting couplings between interacting oscillators with time-varying basic frequencies: instantaneous wavelet bispectrum and information theoretic approach. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  P. McClintock,et al.  Nonlinear dynamics of cardiovascular ageing , 2010, Physics reports.

[21]  Edward Ott,et al.  Spontaneous synchronization of coupled oscillator systems with frequency adaptation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Riccardo Mannella,et al.  Noise in Nonlinear Dynamical Systems , 2009 .

[23]  P. Kloeden,et al.  Dissipative synchronization of nonautonomous and random systems , 2009 .

[24]  Aneta Stefanovska,et al.  Asymmetry-induced effects in coupled phase-oscillator ensembles: Routes to synchronization. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  E. Ott,et al.  Long time evolution of phase oscillator systems. , 2009, Chaos.

[26]  Bard Ermentrout,et al.  Canards, Clusters, and Synchronization in a Weakly Coupled Interneuron Model , 2009, SIAM J. Appl. Dyn. Syst..

[27]  Ernest Barreto,et al.  Synchronization in interacting populations of heterogeneous oscillators with time-varying coupling. , 2008, Chaos.

[28]  Aneta Stefanovska,et al.  Neuronal synchrony during anesthesia: a thalamocortical model. , 2008, Biophysical journal.

[29]  Björn Kralemann,et al.  Phase dynamics of coupled oscillators reconstructed from data. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Aneta Stefanovska,et al.  The effect of low-frequency oscillations on cardio-respiratory synchronization , 2008 .

[31]  E. Ott,et al.  Low dimensional behavior of large systems of globally coupled oscillators. , 2008, Chaos.

[32]  H Kantz,et al.  Direction of coupling from phases of interacting oscillators: a permutation information approach. , 2008, Physical review letters.

[33]  M. Paluš,et al.  Inferring the directionality of coupling with conditional mutual information. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Steven H. Strogatz,et al.  The Spectrum of the Partially Locked State for the Kuramoto Model , 2007, J. Nonlinear Sci..

[35]  A. Stefanovska Coupled Oscillatros: Complex But Not Complicated Cardiovascular and Brain Interactions , 2007, IEEE Engineering in Medicine and Biology Magazine.

[36]  Milan Paluš,et al.  From nonlinearity to causality: statistical testing and inference of physical mechanisms underlying complex dynamics , 2007 .

[37]  Aneta Stefanovska,et al.  Wavelet bispectral analysis for the study of interactions among oscillators whose basic frequencies are significantly time variable. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Martin Rasmussen,et al.  Attractivity and Bifurcation for Nonautonomous Dynamical Systems , 2007 .

[39]  D. Cumin,et al.  Generalising the Kuramoto Model for the study of Neuronal Synchronisation in the Brain , 2007 .

[40]  P. E. Kloeden,et al.  Nonautonomous attractors of switching systems , 2006 .

[41]  Felix Naef,et al.  Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[43]  M. Small Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance , 2005 .

[44]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[45]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[46]  J. Kurths,et al.  Synchronization of two interacting populations of oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Aneta Stefanovska,et al.  Time-phase bispectral analysis. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Milan Palus,et al.  Direction of coupling from phases of interacting oscillators: an information-theoretic approach. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Steven H. Strogatz,et al.  Sync: The Emerging Science of Spontaneous Order , 2003 .

[50]  Peter E. Kloeden,et al.  SYNCHRONIZATION OF NONAUTONOMOUS DYNAMICAL SYSTEMS , 2003 .

[51]  Jeffrey M. Hausdorff,et al.  Fractal dynamics in physiology: Alterations with disease and aging , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[53]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[54]  A Stefanovska,et al.  Reversible transitions between synchronization states of the cardiorespiratory system. , 2000, Physical review letters.

[55]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[56]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[57]  H E Stanley,et al.  Statistical physics and physiology: monofractal and multifractal approaches. , 1999, Physica A.

[58]  J. Salas,et al.  Nonlinear dynamics, delay times, and embedding windows , 1999 .

[59]  Aneta Stefanovska,et al.  Physics of the human cardiovascular system , 1999 .

[60]  R. Spigler,et al.  Adaptive Frequency Model for Phase-Frequency Synchronization in Large Populations of Globally Coupled Nonlinear Oscillators , 1998 .

[61]  J. Acebrón,et al.  Breaking the symmetry in bimodal frequency distributions of globally coupled oscillators , 1997, patt-sol/9707003.

[62]  Aneta Stefanovska,et al.  Correlation Integral and Frequency Analysis of Cardiovascular Functions , 1997 .

[63]  Aneta Stefanovska,et al.  On the overestimation of the correlation dimension , 1997 .

[64]  Manfred Morari,et al.  False-nearest-neighbors algorithm and noise-corrupted time series , 1997 .

[65]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[66]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[67]  Wiesenfeld,et al.  Synchronization transitions in a disordered Josephson series array. , 1996, Physical review letters.

[68]  Hong,et al.  Periodic synchronization in a driven system of coupled oscillators. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[70]  C. L. Nikias,et al.  Higher-order spectra analysis : a nonlinear signal processing framework , 1993 .

[71]  Renato Spigler,et al.  Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators , 1992 .

[72]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[73]  S. Strogatz,et al.  Stability of incoherence in a population of coupled oscillators , 1991 .

[74]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[75]  Brown,et al.  Computing the Lyapunov spectrum of a dynamical system from an observed time series. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[76]  Hidetsugu Sakaguchi,et al.  Cooperative Phenomena in Coupled Oscillator Systems under External Fields , 1988 .

[77]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.

[78]  Y. Kuramoto,et al.  Phase transitions in active rotator systems , 1986 .

[79]  Fraser,et al.  Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.

[80]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[81]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[82]  Werner Horsthemke,et al.  Noise-induced transitions , 1984 .

[83]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[84]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[85]  R. Mañé,et al.  On the dimension of the compact invariant sets of certain non-linear maps , 1981 .

[86]  G. Kraepelin,et al.  A. T. Winfree, The Geometry of Biological Time (Biomathematics, Vol.8). 530 S., 290 Abb. Berlin‐Heidelberg‐New‐York 1980. Springer‐Verlag. DM 59,50 , 1981 .

[87]  F. Takens Detecting strange attractors in turbulence , 1981 .

[88]  A. Winfree The geometry of biological time , 1991 .

[89]  G. Gerisch,et al.  Intracellular oscillations and release of cyclic AMP from Dictyostelium cells. , 1975, Biochemical and biophysical research communications.

[90]  H. Haken Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems , 1975 .

[91]  R M May,et al.  Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos , 1974, Science.

[92]  K. Karhunen Zur Spektraltheorie stochastischer prozesse , 1946 .