Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer

(Abridged) We here continue our effort to model the behaviour of matter when orbiting or accreting onto a generic black hole by developing a new numerical code employing advanced techniques geared solve the equations of in general-relativistic hydrodynamics. The new code employs a number of high-resolution shock-capturing Riemann-solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of AMR techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to compute accurately the electromagnetic emissions from such accretion flows. We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry and performed either in 2D or 3D. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black hole binary interacting with the surrounding circumbinary disc. In this way we can present, for the first time, ray-traced images of the shocked fluid and the light-curve resulting from consistent general-relativistic radiation-transport calculations from this process. The work presented here lays the ground for the development of a generic computational infrastructure employing AMR techniques to deal accurately and self-consistently with accretion flows onto compact objects. In addition to the accurate handling of the matter, we provide a self-consistent electromagnetic emission from these scenarios by solving the associated radiative-transfer problem. While magnetic fields are presently excluded from our analysis, the tools presented here can have a number of applications to study accretion flows onto black holes or neutron stars.

[1]  T. Bronzwaer,et al.  BlackHoleCam: Fundamental physics of the galactic center , 2016, 1606.08879.

[2]  Bruno C. Mundim,et al.  Initial-data contribution to the error budget of gravitational waves from neutron-star binaries , 2016 .

[3]  J. Dexter A public code for general relativistic, polarised radiative transfer around spinning black holes , 2016, 1602.03184.

[4]  Z. Younsi,et al.  ODYSSEY: A PUBLIC GPU-BASED CODE FOR GENERAL RELATIVISTIC RADIATIVE TRANSFER IN KERR SPACETIME , 2016, 1601.02063.

[5]  E. Quataert,et al.  Evolution of accretion discs around a kerr black hole using extended magnetohydrodynamics , 2015, 1511.04445.

[6]  E. Müller,et al.  Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics , 2015, Living reviews in computational astrophysics.

[7]  James M. Stone,et al.  AN EXTENSION OF THE ATHENA++ CODE FRAMEWORK FOR GRMHD BASED ON ADVANCED RIEMANN SOLVERS AND STAGGERED-MESH CONSTRAINED TRANSPORT , 2015, 1511.00943.

[8]  Z. Younsi,et al.  Variations in emission from episodic plasmoid ejecta around black holes , 2015, 1510.01700.

[9]  Michael Dumbser,et al.  Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement , 2015, 1504.07458.

[10]  Roland Haas,et al.  IllinoisGRMHD: an open-source, user-friendly GRMHD code for dynamical spacetimes , 2015, 1501.07276.

[11]  S. Djorgovski,et al.  A possible close supermassive black-hole binary in a quasar with optical periodicity , 2015, Nature.

[12]  Michael Dumbser,et al.  A high order special relativistic hydrodynamic and magnetohydrodynamic code with space-time adaptive mesh refinement , 2013, Comput. Phys. Commun..

[13]  Z. Etienne,et al.  Accretion disks around binary black holes of unequal mass: General relativistic MHD simulations of postdecoupling and merger , 2014, 1410.1543.

[14]  P. Chris Fragile,et al.  NUMERICAL SIMULATIONS OF OPTICALLY THICK ACCRETION ONTO A BLACK HOLE. II. ROTATING FLOW , 2014, 1408.4460.

[15]  R. Keppens,et al.  MPI-AMRVAC FOR SOLAR AND ASTROPHYSICS , 2014, 1407.2052.

[16]  Harvard,et al.  Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure , 2013, 1312.6127.

[17]  Z. Etienne,et al.  Accretion disks around binary black holes of unequal mass: General relativistic magnetohydrodynamic simulations near decoupling , 2013, 1312.0600.

[18]  L. Rezzolla,et al.  Beyond second-order convergence in simulations of binary neutron stars in full general-relativity , 2013, 1306.6052.

[19]  J. Schnittman Astrophysics of super-massive black hole mergers , 2013, 1307.3542.

[20]  Luciano Rezzolla,et al.  Implementation of a simplified approach to radiative transfer in general relativity , 2013, 1306.4953.

[21]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[22]  W. I. Newman,et al.  Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  A. Tchekhovskoy,et al.  Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes , 2012, 1212.5050.

[24]  B. Giacomazzo,et al.  General-relativistic resistive magnetohydrodynamics in three dimensions: Formulation and tests , 2012, 1208.3487.

[25]  General relativistic magnetohydrodynamic simulations of accretion on to Sgr A*: how important are radiative losses? , 2012 .

[26]  Z. Younsi,et al.  General relativistic radiative transfer: formulation and emission from structured tori around black holes , 2012, 1207.4234.

[27]  Z. Etienne,et al.  Binary black-hole mergers in magnetized disks: simulations in full general relativity. , 2012, Physical review letters.

[28]  L. Rezzolla,et al.  THC: a new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics , 2012, 1206.6502.

[29]  L. Rezzolla,et al.  ON THE MASS RADIATED BY COALESCING BLACK HOLE BINARIES , 2012, 1206.3803.

[30]  L. Rezzolla,et al.  ACCURATE SIMULATIONS OF BINARY BLACK HOLE MERGERS IN FORCE-FREE ELECTRODYNAMICS , 2012, The Astrophysical Journal.

[31]  Y. Zlochower,et al.  CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES , 2012, 1204.1073.

[32]  B. Giacomazzo,et al.  GENERAL RELATIVISTIC SIMULATIONS OF MAGNETIZED PLASMAS AROUND MERGING SUPERMASSIVE BLACK HOLES , 2012, 1203.6108.

[33]  T. Paumard,et al.  Modelling the black hole silhouette in Sagittarius A* with ion tori , 2012, 1203.2618.

[34]  S. Komossa Recoiling Black Holes: Electromagnetic Signatures, Candidates, and Astrophysical Implications , 2012, 1202.1977.

[35]  Bernard F. Schutz,et al.  Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.

[36]  Rony Keppens,et al.  Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics , 2012, J. Comput. Phys..

[37]  L. Rezzolla,et al.  ON THE DETECTABILITY OF DUAL JETS FROM BINARY BLACK HOLES , 2011, 1109.1177.

[38]  O. Zanotti Electromagnetic counterparts from counter-rotating relativistic kicked discs , 2011, 1108.3654.

[39]  P. Colella,et al.  THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS , 2011, 1110.0740.

[40]  Guy Perrin,et al.  GYOTO: a new general relativistic ray-tracing code , 2011, 1109.4769.

[41]  J. Faber,et al.  ACCRETION DISKS AROUND KICKED BLACK HOLES: POST-KICK DYNAMICS , 2011, 1107.1711.

[42]  S. Shapiro,et al.  Binary black hole mergers in gaseous disks: Simulations in general relativity , 2011, 1105.2821.

[43]  J. Krolik,et al.  X-RAY SPECTRA FROM MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETING BLACK HOLES , 2011, 1207.2693.

[44]  D. Shoemaker,et al.  MERGERS OF SUPERMASSIVE BLACK HOLES IN ASTROPHYSICAL ENVIRONMENTS , 2011, 1101.4684.

[45]  C. Palenzuela,et al.  Dual Jets from Binary Black Holes , 2010, Science.

[46]  L. Rezzolla,et al.  EM counterparts of recoiling black holes: general relativistic simulations of non-Keplerian discs , 2010, 1002.4185.

[47]  L. Rezzolla,et al.  Vacuum Electromagnetic Counterparts of Binary Black-Hole Mergers , 2009, 0912.2330.

[48]  S. Shapiro,et al.  Binary black hole mergers in gaseous environments: 'Binary Bondi' and 'binary Bondi-Hoyle-Lyttleton' accretion , 2009, 0912.2096.

[49]  C. Palenzuela,et al.  Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields , 2009, 0911.3889.

[50]  L. Lehner,et al.  Post-merger electromagnetic emissions from disks perturbed by binary black holes , 2009, 0910.4969.

[51]  S. McWilliams,et al.  MODELING FLOWS AROUND MERGING BLACK HOLE BINARIES , 2009, 0908.0023.

[52]  G. Lodato,et al.  Black hole mergers: the first light , 2009, 0910.0002.

[53]  A. MacFadyen,et al.  Hydrodynamical response of a circumbinary gas disc to black hole recoil and mass loss , 2009, 0910.0014.

[54]  Ernst Nils Dorband,et al.  Gravitational-wave detectability of equal-mass black-hole binaries with aligned spins , 2009, 0907.0462.

[55]  Manuel Torrilhon,et al.  Compact third-order limiter functions for finite volume methods , 2009, J. Comput. Phys..

[56]  L. Lehner,et al.  Perturbed disks get shocked. Binary black hole merger effects on accretion disks , 2009, 0905.3390.

[57]  C. Palenzuela,et al.  Binary black holes' effects on electromagnetic fields. , 2009, Physical review letters.

[58]  REACTION OF ACCRETION DISKS TO ABRUPT MASS LOSS DURING BINARY BLACK HOLE MERGER , 2008, 0812.4874.

[59]  A. Frank,et al.  SIMULATING MAGNETOHYDRODYNAMICAL FLOW WITH CONSTRAINED TRANSPORT AND ADAPTIVE MESH REFINEMENT: ALGORITHMS AND TESTS OF THE AstroBEAR CODE , 2007, 0710.0424.

[60]  L. Rezzolla Modelling the final state from binary black-hole coalescences , 2008, 0812.2325.

[61]  Rony Keppens,et al.  A multidimensional grid-adaptive relativistic magnetofluid code , 2008, Comput. Phys. Commun..

[62]  M. Kidger,et al.  A massive binary black-hole system in OJ 287 and a test of general relativity , 2008, Nature.

[63]  Ny,et al.  Prompt Shocks in the Gas Disk around a Recoiling Supermassive Black Hole Binary , 2008, 0801.0739.

[64]  J. Ollitrault Relativistic hydrodynamics , 2007 .

[65]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[66]  M. Volonteri Gravitational Recoil: Signatures on the Massive Black Hole Population , 2007, astro-ph/0703180.

[67]  Y. Zlochower,et al.  Maximum gravitational recoil. , 2007, Physical review letters.

[68]  S. McWilliams,et al.  Modeling Kicks from the Merger of Nonprecessing Black Hole Binaries , 2007, astro-ph/0702390.

[69]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[70]  Department of Physics,et al.  WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics , 2007, gr-qc/0701109.

[71]  José A. González,et al.  Maximum kick from nonspinning black-hole binary inspiral. , 2006, Physical review letters.

[72]  P. Hardee,et al.  RAISHIN: A High-Resolution Three-Dimensional General Relativistic Magnetohydrodynamics Code , 2006, astro-ph/0609004.

[73]  J. Krolik,et al.  Light Curves from an MHD Simulation of a Black Hole Accretion Disk , 2006, astro-ph/0606615.

[74]  National Radio Astronomy Observatory,et al.  A Compact Supermassive Binary Black Hole System , 2006, astro-ph/0604042.

[75]  C. Gammie,et al.  Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics , 2005, astro-ph/0512420.

[76]  A. MacFadyen,et al.  RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code , 2005, astro-ph/0505481.

[77]  Santa Barbara,et al.  Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement , 2005, astro-ph/0509254.

[78]  B. Stephens,et al.  Relativistic magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests , 2005, astro-ph/0503420.

[79]  E. Phinney,et al.  The Afterglow of Massive Black Hole Coalescence , 2004, astro-ph/0410343.

[80]  E. Seidel,et al.  Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole , 2004, gr-qc/0403029.

[81]  Kinwah Wu,et al.  Radiation transfer of emission lines in curved space-time , 2004, astro-ph/0406401.

[82]  P. Madau,et al.  Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies , 2004, astro-ph/0401543.

[83]  G. T'oth,et al.  HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics , 2003, astro-ph/0301509.

[84]  J. Font,et al.  Quasi-periodic accretion and gravitational waves from oscillating 'toroidal neutron stars' around a Schwarzschild black hole , 2002, gr-qc/0210018.

[85]  L. Rezzolla,et al.  An improved exact Riemann solver for multi-dimensional relativistic flows , 2002, Journal of Fluid Mechanics.

[86]  J. Font Numerical Hydrodynamics in General Relativity , 2000, Living reviews in relativity.

[87]  S. Komossa,et al.  Discovery of a Binary Active Galactic Nucleus in the Ultraluminous Infrared Galaxy NGC 6240 Using Chandra , 2002, astro-ph/0212099.

[88]  J. Font,et al.  On the Stability of Thick Accretion Disks around Black Holes , 2002, astro-ph/0211102.

[89]  J. Hawley,et al.  A Numerical Method for General Relativistic Magnetohydrodynamics , 2002, astro-ph/0210518.

[90]  R. P. Drake,et al.  On Validating an Astrophysical Simulation Code , 2002, astro-ph/0206251.

[91]  L. Rezzolla,et al.  New relativistic effects in the dynamics of nonlinear hydrodynamical waves. , 2002, Physical review letters.

[92]  P. Armitage,et al.  Accretion during the Merger of Supermassive Black Holes , 2002, astro-ph/0201318.

[93]  R. Teyssier c ○ ESO 2002 Astronomy Astrophysics , 2002 .

[94]  M. Milosavljevic,et al.  Formation of Galactic Nuclei , 2001, astro-ph/0103350.

[95]  D. Meier,et al.  General Relativistic Simulations of Early Jet Formation in a Rapidly Rotating Black Hole Magnetosphere , 1999, astro-ph/9907435.

[96]  J. Font,et al.  Numerical 3+1 General Relativistic Magnetohydrodynamics: A Local Characteristic Approach , 1997, astro-ph/0506063.

[97]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[98]  R. Narayan,et al.  Advection dominated accretion: Underfed black holes and neutron stars , 1994, astro-ph/9411059.

[99]  M. Haehnelt Low-frequency gravitational waves from supermassive black holes , 1994, astro-ph/9405032.

[100]  C. Vreugdenhil,et al.  Numerical methods for advection-diffusion problems , 1993 .

[101]  R. Löhner An adaptive finite element scheme for transient problems in CFD , 1987 .

[102]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[103]  John F. Hawley,et al.  A Numerical Study of Nonspherical Black Hole Accretion , 1984 .

[104]  S. Stepney,et al.  Numerical fits to important rates in high temperature astrophysical plasmas , 1983 .

[105]  V. Moncrief,et al.  Relativistic fluid disks in orbit around Kerr black holes , 1976 .

[106]  F. Curtis Michel,et al.  Accretion of matter by condensed objects , 1971 .

[107]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .