Two-step growth of metamorphic GaAs/AlGaAs mirror on an InP substrate by MOCVD

Abstract This paper describes a high-reflectivity metamorphic undoped GaAs/Al0.98Ga0.02As distributed Bragg reflector grown on an InP substrate by metalorganic chemical vapor deposition (MOCVD). Optimal two-step growth conditions at low and high growth temperatures can provide a smooth surface morphology, leading to a high reflectivity (> 99.5%) with little optical scattering loss. We also show that a large mismatched interface does not create dislocations in the active layer at a slow cooling rate after the growth sequence. These results indicate that metamorphic GaAs/Al0.98Ga0.02As directly grown on an InP substrate by MOCVD is promising for application to InP-based vertical cavity surface-emitting laser structures.

[1]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[2]  Alex Mutig,et al.  Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers , 2009 .

[3]  R. Iga,et al.  Single transverse mode operation of 1.55-μm buried heterostructure vertical-cavity surface-emitting lasers , 2002, IEEE Photonics Technology Letters.

[4]  Characterization of GaAs buffer layer function in GaAs/InP strained structure grown by MBE , 1996 .

[5]  K. Hiruma,et al.  Surface migration and reaction mechanism during selective growth of GaAs and AlAs by metalorganic chemical vapor deposition , 1990 .

[6]  Chennupati Jagadish,et al.  Growth of highly strained InGaAs quantum wells on GaAs substrates—effect of growth rate , 2005 .

[7]  Y. Itoh,et al.  The effect of V/III ratio on the initial layer of GaAs on Si , 1992 .

[8]  Heteroepitaxial GaAs layers on InP substrates: Radiative recombinations, strain relaxation, structural properties, and comparison with InP layers on GaAs , 1992 .

[9]  H. Strunk,et al.  The driving force for dislocation multiplication in the substrate of misfitting heteroepitaxial systems , 1995 .

[10]  P. Wolf,et al.  40 Gbit/s modulation of 1550 nm VCSEL , 2011 .

[11]  K. Oe,et al.  Lateral GaAs growth over tungsten gratings on (001) GaAs substrates by metalorganic chemical vapor deposition and applications to vertical field‐effect transistors , 1984 .

[12]  S. Chu,et al.  Lattice‐mismatch‐generated dislocation structures and their confinement using superlattices in heteroepitaxial GaAs/InP and InP/GaAs grown by chemical beam epitaxy , 1989 .

[13]  J. Boucart,et al.  Optimization of the metamorphic growth of GaAs for long wavelength VCSELs , 1999 .

[14]  Alex Mutig,et al.  High-performance 980 nm VCSELs for 12.5 Gbit/s data transmission at 155°C and 49 Gbit/s at -14°C , 2012 .

[15]  E. Derouin,et al.  Metamorphic DBR and tunnel-junction injection. A CW RT monolithic long-wavelength VCSEL , 1999 .

[16]  Jesper Berggren,et al.  Optical loss and interface morphology in AlGaAs∕GaAs distributed Bragg reflectors , 2007 .

[17]  Mattias Hammar,et al.  Doping-induced losses in AlAs/GaAs distributed Bragg reflectors , 2001 .

[18]  P. Cohen,et al.  Surface reconstructions and growth mode transitions of AlAs(100) , 1995 .

[19]  John E. Bowers,et al.  GaAs to InP wafer fusion , 1995 .