Quantum Field Theory over Fq

We consider the number N̄(q) of points in the projective complement of graph hypersurfaces over Fq. We show that the smallest graphs with non-polynomial N̄(q) have 14 edges. We give six examples which fall into two classes. One class has an exceptional prime 2 whereas in the other class N̄(q) depends on the number of cube roots of unity in Fq. At graphs with 16 edges we find examples where N̄(q) can be reduced to the number of points on a (presumably) non-mixed-Tate surface in P. In an outlook we show that applying Feynman-rules in Fq lets the perturbation series terminate for renormalizable and non-renormalizable bosonic quantum field theories.

[1]  On Motives Associated to Graph Polynomials , 2005, math/0510011.

[2]  Bernard Dwork,et al.  On the Rationality of the Zeta Function of an Algebraic Variety , 1960 .

[3]  K. Yeats,et al.  Spanning Forest Polynomials and the Transcendental Weight of Feynman Graphs , 2009, 0910.5429.

[4]  Robin Hartshorne,et al.  Algebraic geometry , 1977, Graduate texts in mathematics.

[5]  Spanning trees and a conjecture of Kontsevich , 1998, math/9806055.

[6]  Chao Yang,et al.  On Polynomials of Spanning Trees , 2000 .

[7]  Matroids motives, and a conjecture of Kontsevich , 2000, math/0012198.

[8]  Shulim Kaliman,et al.  On a theorem of Ax , 2004 .

[9]  F. Brown On the periods of some Feynman integrals , 2009, 0910.0114.

[10]  D. J. Broadhurst,et al.  Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops , 1996, hep-th/9609128.

[11]  John R. Stembridge,et al.  Counting points on varieties over finite fields related to a conjecture of Kontsevich , 1998 .

[12]  G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .

[13]  O. Schnetz Quantum periods : A census of φ 4-transcendentals , 2010 .

[14]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[15]  D. Doryn On One Example and One Counterexample in Counting Rational Points on Graph Hypersurfaces , 2010, 1006.3533.

[16]  D. J. Broadhurst,et al.  Knots and Numbers in ϕ4 Theory to 7 Loops and Beyond , 1995 .