Numerical Calculations of Finite Key Rate for General Quantum Key Distribution Protocols

Finite key analysis of quantum key distribution (QKD) is an important tool for any QKD implementation. While much work has been done on the framework of finite key analysis, the application to individual protocols often relies on the the specific protocol being simple or highly symmetric as well as represented in small finite-dimensional Hilbert spaces. In this work, we extend our pre-existing reliable, efficient, tight, and generic numerical method for calculating the asymptotic key rate of device-dependent QKD protocols in finite-dimensional Hilbert spaces to the finite key regime using the security analysis framework of Renner. We explain how this extension preserves the reliability, efficiency, and tightness of the asymptotic method. We then explore examples which illustrate both the generality of our method as well as the importance of parameter estimation and data processing within the framework.

[1]  Luke C. G. Govia,et al.  Numerical finite-key analysis of quantum key distribution , 2019, npj Quantum Information.

[2]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[3]  Zhu Cao,et al.  Discrete-phase-randomized coherent state source and its application in quantum key distribution , 2014, 1410.3217.

[4]  V. Scarani,et al.  Reference-frame-independent quantum key distribution , 2010, 1003.1050.

[5]  Norbert Lutkenhaus,et al.  Symmetries in Quantum Key Distribution and the Connection between Optimal Attacks and Optimal Cloning , 2011, 1112.3396.

[6]  Hoi-Kwong Lo,et al.  Efficient Quantum Key Distribution Scheme and a Proof of Its Unconditional Security , 2004, Journal of Cryptology.

[7]  James F. Dynes,et al.  Practical security bounds against the Trojan-horse attack in quantum key distribution , 2015, 1506.01989.

[8]  Jie Lin,et al.  Security proof of practical quantum key distribution with detection-efficiency mismatch , 2020, 2004.04383.

[9]  Valerio Scarani,et al.  Finite-key analysis for practical implementations of quantum key distribution , 2008, 0811.2628.

[10]  Omar Fawzi,et al.  Entropy Accumulation , 2016, Communications in Mathematical Physics.

[11]  Kenneth G. Paterson,et al.  Quantum cryptography: a practical information security perspective , 2004, IACR Cryptol. ePrint Arch..

[12]  Hoi-Kwong Lo,et al.  Quantum cryptography with realistic devices , 2019, 1903.09051.

[13]  G. Vallone,et al.  Advances in Quantum Cryptography , 2019, 1906.01645.

[14]  Norbert Lütkenhaus,et al.  Entanglement as a precondition for secure quantum key distribution. , 2004, Physical review letters.

[15]  T. Jennewein,et al.  Demonstration of a 6 state-4 state reference frame independent channel for quantum key distribution , 2019, Applied Physics Letters.

[16]  Douglas Stebila,et al.  The Case for Quantum Key Distribution , 2009, QuantumComm.

[17]  T. Rudolph,et al.  Reference frames, superselection rules, and quantum information , 2006, quant-ph/0610030.

[18]  Jan Bouda,et al.  Using quantum key distribution for cryptographic purposes: A survey , 2007, Theor. Comput. Sci..

[19]  Nicolas J. Cerf,et al.  Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables , 2003, Quantum Inf. Comput..

[20]  Renato Renner,et al.  Cryptographic security of quantum key distribution , 2014, ArXiv.

[21]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[22]  Ueli Maurer,et al.  Small accessible quantum information does not imply security. , 2007, Physical review letters.

[23]  Jie Lin,et al.  Asymptotic Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution , 2019 .

[24]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Matthias Christandl,et al.  Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.

[26]  Normand J. Beaudry,et al.  Squashing models for optical measurements in quantum communication. , 2008, Physical review letters.

[27]  Tobias Moroder,et al.  Entanglement verification with realistic measurement devices via squashing operations , 2009, 0909.4212.

[28]  Debbie W. Leung,et al.  The Universal Composable Security of Quantum Key Distribution , 2004, TCC.

[29]  Jie Lin Security Proofs for Quantum Key Distribution Protocols by Numerical Approaches , 2017 .

[30]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[31]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[32]  Ernest Y.-Z. Tan,et al.  Computing secure key rates for quantum key distribution with untrusted devices , 2019 .

[33]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[34]  Patrick J. Coles,et al.  Numerical approach for unstructured quantum key distribution , 2015, Nature Communications.

[35]  Feihu Xu,et al.  Concise security bounds for practical decoy-state quantum key distribution , 2013, 1311.7129.

[36]  Renato Renner,et al.  Security Bounds for Quantum Cryptography with Finite Resources , 2008, TQC.

[37]  Hermann Kampermann,et al.  Min-entropy and quantum key distribution: Nonzero key rates for ``small'' numbers of signals , 2011 .

[38]  Normand J. Beaudry Assumptions in quantum cryptography , 2015, 1505.02792.

[39]  Roger Colbeck,et al.  No extension of quantum theory can have improved predictive power , 2010, Nature communications.

[40]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[41]  Patrick J. Coles Unification of different views of decoherence and discord , 2011, 1110.1664.

[42]  Renato Renner,et al.  Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. , 2007, Physical review letters.

[43]  Qiaoyan Wen,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2012 .

[44]  Patrick J. Coles,et al.  Reliable numerical key rates for quantum key distribution , 2017, Quantum.

[45]  Z. Yuan,et al.  Quantum key distribution over 122 km of standard telecom fiber , 2004, quant-ph/0412171.

[46]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[47]  Michele Mosca,et al.  Cybersecurity in an Era with Quantum Computers: Will We Be Ready? , 2017, IEEE Security & Privacy.

[48]  John Preskill,et al.  Security of quantum key distribution using weak coherent states with nonrandom phases , 2007, Quantum Inf. Comput..