Parameter modulation for secure communication via the synchronization of Chen hyperchaotic systems

The Chen hyperchaotic systems are synchronized via linear feedback control and the parameter is identified by using the adaptive control techniques even though the parameter is unknown. It is proved by the Lyapunov stability theory that the response system is able to track the driving system well and the parameter is estimated exactly. Based on the synchronization of Chen hyperchaotic systems, a scheme of secure communication using the parameter modulation method is presented and the transmitted plaintext message can be successfully recovered. Finally, white Gaussian noise in different kinds of signal-to-noise ratio is conducted to evaluate the performance of the proposed secure communication scheme. The return maps of the transmitted signals are provided to show the higher degree of security. Numerical simulation shows its feasibility.

[1]  Xiaoshan Zhao,et al.  The parametric synchronization scheme of chaotic system , 2011 .

[2]  Yuanwei Jing,et al.  Modified projective synchronization of chaotic systems with disturbances via active sliding mode control , 2010 .

[3]  Tao Yang,et al.  A SURVEY OF CHAOTIC SECURE COMMUNICATION SYSTEMS , 2004 .

[4]  Yang Tang,et al.  Controller design for synchronization of an array of delayed neural networks using a controllable probabilistic PSO , 2011, Inf. Sci..

[5]  Feng Hu,et al.  Two novel synchronization criterions for a unified chaotic system , 2006 .

[6]  Jinhu Lu,et al.  Synchronization of an uncertain unified chaotic system via adaptive control , 2002 .

[7]  Jinde Cao,et al.  Synchronization of a chaotic electronic circuit system with cubic term via adaptive feedback control , 2009 .

[8]  Huijun Gao,et al.  A Constrained Evolutionary Computation Method for Detecting Controlling Regions of Cortical Networks , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[9]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[10]  Wei Zhang,et al.  Sliding mode control for chaotic systems based on LMI , 2009 .

[11]  Wolfgang A. Halang,et al.  Analog Chaos-based Secure Communications and Cryptanalysis: A Brief Survey , 2007, ArXiv.

[12]  Ju H. Park Adaptive synchronization of hyperchaotic Chen system with uncertain parameters , 2005 .

[13]  Zhenwei Cao,et al.  Secure communication via multi-parameter modulation using Chua systems , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[14]  Leon O. Chua,et al.  Secure communication via chaotic parameter modulation , 1996 .

[15]  Tao Yang,et al.  Recovery of digital signals from chaotic switching , 1995, Int. J. Circuit Theory Appl..

[16]  Guanrong Chen,et al.  Generating Hyperchaos via State Feedback Control , 2005, Int. J. Bifurc. Chaos.

[17]  Huijun Gao,et al.  Distributed Synchronization in Networks of Agent Systems With Nonlinearities and Random Switchings , 2013, IEEE Transactions on Cybernetics.

[18]  Chun-Mei Yang,et al.  Cryptanalyzing chaotic secure communications using return maps , 1998 .

[19]  Michael Peter Kennedy,et al.  Chaos shift keying : modulation and demodulation of a chaotic carrier using self-sychronizing chua"s circuits , 1993 .

[20]  Pérez,et al.  Extracting messages masked by chaos. , 1995, Physical review letters.

[21]  Tao Xiang,et al.  An improved chaotic cryptosystem with external key , 2008 .

[22]  Gonzalo Álvarez,et al.  Return-Map Cryptanalysis Revisited , 2005, Int. J. Bifurc. Chaos.

[23]  P. Olver Nonlinear Systems , 2013 .

[24]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[25]  Jinde Cao,et al.  New communication schemes based on adaptive synchronization. , 2007, Chaos.

[26]  Guanrong Chen,et al.  Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.

[27]  Chao-Jung Cheng,et al.  Robust synchronization of uncertain unified chaotic systems subject to noise and its application to secure communication , 2012, Appl. Math. Comput..

[28]  Naser Pariz,et al.  A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter , 2009 .

[29]  Parlitz,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical Review Letters.

[30]  Hanping Hu,et al.  Analyzing and improving a chaotic encryption method , 2004 .

[31]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[32]  Guanrong Chen,et al.  Breaking a chaos-based secure communication scheme designed by an improved modulation method , 2004, nlin/0411007.

[33]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.