High Throughput Computation of Reference Ranges of Biventricular Cardiac Function on the UK Biobank Population Cohort
暂无分享,去创建一个
Alejandro F. Frangi | Ali Gooya | Le Zhang | Marco Pereañez | Stefan K. Piechnik | Stefan Neubauer | Steffen E. Petersen | Xènia Albà | Rahman Attar
[1] Alan D. Lopez,et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015 , 2017, Journal of the American College of Cardiology.
[2] Satrajit S. Ghosh,et al. Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python , 2011, Front. Neuroinform..
[3] Konstantinos Kamnitsas,et al. Reverse Classification Accuracy: Predicting Segmentation Performance in the Absence of Ground Truth , 2017, IEEE Transactions on Medical Imaging.
[4] Alejandro F. Frangi,et al. Automated Quality Assessment of Cardiac MR Images Using Convolutional Neural Networks , 2016, SASHIMI@MICCAI.
[5] Alejandro F. Frangi,et al. Automatic initialization and quality control of large‐scale cardiac MRI segmentations , 2018, Medical Image Anal..
[6] Stefan K. Piechnik,et al. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort , 2017, Journal of Cardiovascular Magnetic Resonance.