Finding connected components of a semialgebraic set in subexponential time

AbstractLet a semialgebraic set be given by a quantifier-free formula of the first-order theory of real closed fields with atomic subformulae of type (fi ≥ 0), 1 ≤i ≤k where the polynomialsfi ε ℤ[X1,..., Xn] have degrees deg(fi <d and the absolute value of each (integer) coefficient offi is at most 2M. An algorithm is designed which finds the connected components of the semialgebraic set in time $$M^{O(1)} (kd)^{n^{O(1)} } $$ . The best previously known bound $$M^{O(1)} (kd)^{n^{O(n)} } $$ for this problem follows from Collins' method of Cylindrical Algebraic Decomposition.

[1]  D. Grigor'ev Complexity of deciding Tarski algebra , 1988 .

[2]  Nicolai Vorobjov,et al.  Counting connected components of a semialgebraic set in subexponential time , 1992, computational complexity.

[3]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[4]  D. Yu Grigor Complexity of Deciding Tarski Algebra , 1988 .

[5]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[6]  Joos Heintz,et al.  COMPTAGE DES COMPOSANTES CONNEXES D'UN ENSEMBLE SEMI-ALGEBRIQUE EN TEMPS SIMPLEMENT EXPONENTIEL , 1990 .

[7]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[8]  Nikolaj N. Vorobjov Deciding Consistency of Systems of Polynomial in Exponent Inequalities in Subexponential Time , 1991 .

[9]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[10]  A. Dold Lectures on Algebraic Topology , 1972 .

[11]  Joos Heintz,et al.  Single Exponential Path Finding in Semialgebraic Sets. Part 1: The Case of a Regular Bounded Hypersurface , 1990, AAECC.

[12]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[13]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[14]  H. R. Wüthrich,et al.  Ein Entscheidungsverfahren für die Theorie der reell- abgeschlossenen Körper , 1976, Komplexität von Entscheidungsproblemen 1976.

[15]  I. Shafarevich Basic algebraic geometry , 1974 .

[16]  Joos Heintz,et al.  Sur la complexité du principe de Tarski-Seidenberg , 1989 .