Finding connected components of a semialgebraic set in subexponential time
暂无分享,去创建一个
[1] D. Grigor'ev. Complexity of deciding Tarski algebra , 1988 .
[2] Nicolai Vorobjov,et al. Counting connected components of a semialgebraic set in subexponential time , 1992, computational complexity.
[3] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[4] D. Yu Grigor. Complexity of Deciding Tarski Algebra , 1988 .
[5] Dima Grigoriev,et al. Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..
[6] Joos Heintz,et al. COMPTAGE DES COMPOSANTES CONNEXES D'UN ENSEMBLE SEMI-ALGEBRIQUE EN TEMPS SIMPLEMENT EXPONENTIEL , 1990 .
[7] J. Renegar,et al. On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .
[8] Nikolaj N. Vorobjov. Deciding Consistency of Systems of Polynomial in Exponent Inequalities in Subexponential Time , 1991 .
[9] John Canny,et al. The complexity of robot motion planning , 1988 .
[10] A. Dold. Lectures on Algebraic Topology , 1972 .
[11] Joos Heintz,et al. Single Exponential Path Finding in Semialgebraic Sets. Part 1: The Case of a Regular Bounded Hypersurface , 1990, AAECC.
[12] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[13] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..
[14] H. R. Wüthrich,et al. Ein Entscheidungsverfahren für die Theorie der reell- abgeschlossenen Körper , 1976, Komplexität von Entscheidungsproblemen 1976.
[15] I. Shafarevich. Basic algebraic geometry , 1974 .
[16] Joos Heintz,et al. Sur la complexité du principe de Tarski-Seidenberg , 1989 .