The ideal utilization factor: A tool to optimize the energetic performances of resonant electromagnetic vibration energy harvesters

In this paper, the Ideal Utilization Factor (IUF) is presented and discussed with reference to Resonant Electromagnetic Vibration Energy Harvesters (REVEHs). The IUF is an important figure of merit that allows the identification suitable additional non-dissipative components to insert between the REVEH coil and the bridge rectifier. Such components allow improving the actual energetic performances of REVEHs in the frequency regions of practical interest.

[1]  Kincho H. Law,et al.  Electromagnetic energy harvester with repulsively stacked multilayer magnets for low frequency vibrations , 2013 .

[2]  Dibin Zhu,et al.  Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator , 2010 .

[3]  Bernard H. Stark,et al.  Experimental investigation of inductorless, single-stage boost rectification for sub-mW electromagnetic energy harvesters , 2011, IEEE/ACM International Symposium on Low Power Electronics and Design.

[4]  Neil M. White,et al.  An electromagnetic, vibration-powered generator for intelligent sensor systems , 2004 .

[5]  Leila Parsa,et al.  A New Optimum Power Control Scheme for Low-Power Energy Harvesting Systems , 2013, IEEE Transactions on Industry Applications.

[6]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[7]  Xinping Cao,et al.  Electromagnetic Energy Harvesting Circuit With Feedforward and Feedback DC–DC PWM Boost Converter for Vibration Power Generator System , 2007, IEEE Transactions on Power Electronics.

[8]  Yiannos Manoli,et al.  A 2.6 $\mu \text{W}$ –1.2 mW Autonomous Electromagnetic Vibration Energy Harvester Interface IC with Conduction-Angle-Controlled MPPT and up to 95% Efficiency , 2017, IEEE Journal of Solid-State Circuits.

[9]  Chulwoo Kim,et al.  Self-Powered 30 µW to 10 mW Piezoelectric Energy Harvesting System With 9.09 ms/V Maximum Power Point Tracking Time , 2014, IEEE Journal of Solid-State Circuits.

[10]  B. H. Stark,et al.  Ultralow Power, Fully Autonomous Boost Rectifier for Electromagnetic Energy Harvesters , 2013, IEEE Transactions on Power Electronics.

[11]  Luigi Costanzo,et al.  Identification of the parameters of the equivalent electric circuit of electromagnetic harvesters , 2015, 2015 International Conference on Renewable Energy Research and Applications (ICRERA).

[12]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[13]  Luigi Costanzo,et al.  Resonant electromagnetic vibration harvesters: Determination of the equivalent electric circuit parameters and simplified closed-form analysis for the identification of the optimal diode bridge rectifier DC load , 2017 .

[14]  Luigi Costanzo,et al.  Closed-form analysis of Switchless Electrostatic Vibration Energy Harvesters , 2015, 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER).

[15]  Luigi Costanzo,et al.  MPPT in Wireless Sensor Nodes Supply Systems Based on Electromagnetic Vibration Harvesters for Freight Wagons Applications , 2017, IEEE Transactions on Industrial Electronics.

[16]  C. S. Kong,et al.  A general maximum power transfer theorem , 1995 .

[17]  Paul D. Mitcheson,et al.  Resonant frequency tuning of an industrial vibration energy harvester , 2014 .

[18]  Andrew S. Holmes,et al.  Tuning the Resonant Frequency and Damping of an Electromagnetic Energy Harvester Using Power Electronics , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  A Carrella,et al.  Tuning a resonant energy harvester using a generalized electrical load , 2010 .

[20]  Stephen G. Burrow,et al.  Switched-Mode Load Impedance Synthesis to Parametrically Tune Electromagnetic Vibration Energy Harvesters , 2015, IEEE/ASME Transactions on Mechatronics.

[21]  Timothy C. Green,et al.  Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers , 2007 .

[22]  Patrick J. Smith,et al.  AN EFFICIENT LOW COST ELECTROMAGNETIC VIBRATION HARVESTER , 2009 .

[23]  Dibin Zhu,et al.  General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters , 2012 .

[24]  Alex Elvin,et al.  An experimentally validated electromagnetic energy harvester , 2011 .

[25]  Dhiman Mallick,et al.  Bidirectional electrical tuning of FR4 based electromagnetic energy harvesters , 2015 .

[26]  Roberto Langella,et al.  Resonant electromagnetic vibration harvesters feeding sensor nodes for real-time diagnostics and monitoring in railway vehicles for goods transportation: A numerical-experimental analysis , 2016, 2016 IEEE International Power Electronics and Motion Control Conference (PEMC).

[27]  Leila Parsa,et al.  An Efficient AC–DC Step-Up Converter for Low-Voltage Energy Harvesting , 2010, IEEE Transactions on Power Electronics.

[28]  Dongsheng Ma,et al.  A 12-μW to 1.1-mW AIM Piezoelectric Energy Harvester for Time-Varying Vibrations With 450-nA $I_{\bm Q}$ , 2015, IEEE Transactions on Power Electronics.

[29]  Luigi Costanzo,et al.  Maximization of the extracted power in resonant electromagnetic vibration harvesters applications employing bridge rectifiers , 2017 .

[30]  Roberto Langella,et al.  Real-time Diagnostic and Monitoring on Railway Vehicles for Goods Transportation Preliminary Analysis Aimed to Model Mechanical Vibrations and Wind Speed for Autonomous Monitoring and Diagnostic Systems feed by Energy Harvesters , 2015 .