A modified memory-based mathematical model describing fluid flow in porous media

Abstract This study presents a modified memory-based mathematical model describing fluid flow in porous media. For the first time such model is derived employing the Grunwald–Letnikov (G–L) definition of the Riemann–Liouville (R–L) time fractional operator via a generalized Darcy’s equation. The proposed mathematical model is suitable to describe the anomalous diffusion behavior observed in a medium of fractal geometry, as well as in disordered and highly heterogeneous porous media. A numerical scheme based on existing discretization method is employed to handle the modified memory-based mathematical model. The accuracy of the numerical model is validated through the analytical solution for a simplified problem. In addition, numerical experiments are presented to demonstrate the effect of the anomalous diffusion exponent on the predicted reservoir pressure, wellbore pressure, and volumetric flux considering the flow of an under-saturated oil in a hydrocarbon reservoir as an example. Results show that decrease in magnitude of the anomalous diffusion exponent results in larger pore and wellbore pressure. This study would open a door to apply the G–L interpretation of the time fractional operator in numerical modeling of fluid flow through porous media.

[1]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[2]  M. Hossain,et al.  A Comprehensive Material Balance Equation with the Inclusion of Memory During Rock-Fluid Deformation , 2009 .

[3]  C. Lubich Discretized fractional calculus , 1986 .

[4]  Francisco J. Sánchez-Sesma,et al.  Theory and simulation of time-fractional fluid diffusion in porous media , 2013 .

[5]  Xiaoyun Jiang,et al.  Parameter estimation for the fractional fractal diffusion model based on its numerical solution , 2016, Comput. Math. Appl..

[6]  Reyadh A. Almehaideb Improved Correlations for Fluid Properties of UAE Crude Oils , 2003 .

[7]  Shyam L. Kalla,et al.  Numerical treatment of fractional heat equations , 2008 .

[8]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[9]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[10]  Guanrong Chen,et al.  Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching , 2013, Comput. Math. Appl..

[11]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[12]  D. W. Peaceman Interpretation of well-block pressures in numerical reservoir simulation with nonsquare grid blocks and anisotropic permeability , 1983 .

[13]  J. Auriault,et al.  Homogenization of Coupled Phenomena in Heterogenous Media , 2009 .

[14]  Raphael Blumenfeld,et al.  Failure of isotropic continuous-time random walks to model finite-size particle diffusion in porous media and an effective modification , 2015 .

[15]  Koo-Chul Lee,et al.  Nonlinear correction to Darcy's law for a flow through periodic arrays of elliptic cylinders , 2001 .

[16]  Mark M. Meerschaert,et al.  A second-order accurate numerical approximation for the fractional diffusion equation , 2006, J. Comput. Phys..

[17]  Vladimir Mityushev,et al.  Nonlinear correction to Darcy’s law for channels with wavy walls , 2013 .

[18]  José António Tenreiro Machado,et al.  Fractional model for malaria transmission under control strategies , 2013, Comput. Math. Appl..

[19]  J. H. Abou-Kassem,et al.  Petroleum reservoir simulation : a basic approach , 2006 .

[20]  M. Caputo,et al.  Experimental and theoretical memory diffusion of water in sand , 2003 .

[21]  Rina Schumer,et al.  Incorporating Super-Diffusion due to Sub-Grid Heterogeneity to Capture Non-Fickian Transport. , 2015, Ground water.

[22]  M. Caputo Models of flux in porous media with memory , 2000 .

[23]  Santos B. Yuste,et al.  On an explicit finite difference method for fractional diffusion equations , 2003, ArXiv.

[24]  Rodolfo Camacho Velazquez,et al.  Interference Tests Analysis in Fractured Formations With a Time-Fractional Equation , 2012 .

[25]  R. Raghavan,et al.  Fractional diffusion in rocks produced by horizontal wells with multiple, transverse hydraulic fractures of finite conductivity , 2013 .

[26]  Rajagopal Raghavan,et al.  Rate Decline, Power Laws, and Subdiffusion in Fractured Rocks , 2017 .

[27]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2000 .

[28]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[29]  Christopher L. MacDonald,et al.  Efficient computation of the Grünwald-Letnikov fractional diffusion derivative using adaptive time step memory , 2015, J. Comput. Phys..

[30]  M. Caputo,et al.  Diffusion in porous layers with memory , 2004 .

[31]  H. R. Hicks,et al.  Numerical methods for the solution of partial difierential equations of fractional order , 2003 .

[32]  O. Ozcan,et al.  Fractional diffusion in naturally fractured unconventional reservoirs , 2014 .

[33]  Fawang Liu,et al.  Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..

[34]  Monica Moroni,et al.  Flux in Porous Media with Memory: Models and Experiments , 2010 .

[35]  Michele Caputo,et al.  Diffusion with space memory modelled with distributed order space fractional differential equations , 2003 .

[36]  Yufeng Xu,et al.  Numerical and analytical solutions of new generalized fractional diffusion equation , 2013, Comput. Math. Appl..

[37]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[38]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[39]  Abdul-Aziz Al-Helali,et al.  A MATHEMATICAL MODEL FOR THERMAL FLOODING WITH EQUAL ROCK AND FLUID TEMPERATURES , 2015 .

[40]  Yu-xin Zhang,et al.  Notes on Implicit finite difference approximation for time fractional diffusion equations [Comput. Math. Appl. 56 (2008) 1138-1145] , 2011, Comput. Math. Appl..

[41]  Michele Caputo,et al.  Diffusion of fluids in porous media with memory , 1999 .