Ordinal Means

The aim of the contribution is the discussion of some types and classes of means on ordinal scales, especially kernel and shift invariant ordinal means, weighted ordinal means based on weighted divisible t–conorms (t–norms) and dissimilarity based ordinal means. Moreover, several types of ordinal arithmetic means are introduced.

[1]  G. Mayor,et al.  Triangular norms on discrete settings , 2005 .

[2]  G. Mayor,et al.  t‐Operators and uninorms on a finite totally ordered set , 1999 .

[3]  Radko Mesiar,et al.  Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms , 1999, Fuzzy Sets Syst..

[4]  Radko Mesiar,et al.  Stability of aggregation operators , 2001, EUSFLAT Conf..

[5]  Radko Mesiar,et al.  Weighted Means Based on Triangular Conorms , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[6]  Radko Mesiar,et al.  Quantitative weights and aggregation , 2004, IEEE Transactions on Fuzzy Systems.

[7]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[8]  Radko Mesiar,et al.  A review of aggregation operators , 2001 .

[9]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[10]  J. Aczél,et al.  Sur les opérations définies pour nombres réels , 1948 .

[11]  Joan Torrens,et al.  t-Operators and uninorms on a finite totally ordered set , 1999, Int. J. Intell. Syst..

[12]  E. Pap Null-Additive Set Functions , 1995 .

[13]  Radko Mesiar Fuzzy set approach to the utility, preference relations, and aggregation operators , 2007, Eur. J. Oper. Res..

[14]  R. Mesiar,et al.  Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .

[15]  Radko Mesiar,et al.  Weighted ordinal means , 2007, Inf. Sci..

[16]  C. Sierra,et al.  A new approach to connective generation in the framework of expert systems using fuzzy logic , 1988, [1988] Proceedings. The Eighteenth International Symposium on Multiple-Valued Logic.

[17]  Radko Mesiar,et al.  Characterization of invariant aggregation operators , 2004, Fuzzy Sets Syst..

[18]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[19]  Vicenç Torra,et al.  Extending Choquet Integrals for Aggregation of Ordinal Values , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[20]  Joan Torrens,et al.  On a class of operators for expert systems , 1993, Int. J. Intell. Syst..

[21]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .