Optimal control design of constant amplitude phase-modulated pulses: application to calibration-free broadband excitation.

An optimal control algorithm for generating purely phase-modulated pulses is derived. The methodology is applied to obtain broadband excitation with unprecedented tolerance to RF inhomogeneity. Design criteria were transformation of Iz-->Ix over resonance offsets of +/-25 kHz for constant RF amplitude anywhere in the range 10-20 kHz, with a pulse length of 1 ms. Simulations transform Iz to greater than 0.99 Ix over the targetted ranges of resonance offset and RF variability. Phase deviations in the final magnetization are less than 2-3 degrees over almost the entire range, with sporadic deviations of 6-9 degrees at a few offsets for the lowest RF (10 kHz) in the optimized range. Experimental performance of the new pulse is in excellent agreement with the simulations, and the robustness of the excitation pulse and a derived refocusing pulse are demonstrated by insertion into conventional HSQC and HMBC-type experiments.

[1]  J. Keeler,et al.  Experiments for recording pure-absorption heteronuclear correlation spectra using pulsed field gradients , 1992 .

[2]  E. R. Pinch,et al.  Optimal control and the calculus of variations , 1993 .

[3]  G. Siouris,et al.  Optimum systems control , 1979, Proceedings of the IEEE.

[4]  K. Hallenga,et al.  A constant-time 13C−1H HSQC with uniform excitation over the complete 13C chemical shift range , 1995, Journal of biomolecular NMR.

[5]  Geoffrey Bodenhausen,et al.  Experimental aspects of chirp NMR spectroscopy , 1993 .

[6]  A. Macovski,et al.  Optimal Control Solutions to the Magnetic Resonance Selective Excitation Problem , 1986, IEEE Transactions on Medical Imaging.

[7]  A. J. Shaka,et al.  Symmetric phase-alternating composite pulses , 1987 .

[8]  Malcolm H. Levitt,et al.  Symmetrical composite pulse sequences for NMR population inversion. I. Compensation of radiofrequency field inhomogeneity , 1982 .

[9]  Y. Zur,et al.  Design of adiabatic selective pulses using optimal control theory , 1996, Magnetic resonance in medicine.

[10]  Ray Freeman,et al.  Wideband Excitation with Polychromatic Pulses , 1994 .

[11]  Burkhard Luy,et al.  Reducing the duration of broadband excitation pulses using optimal control with limited RF amplitude. , 2004, Journal of magnetic resonance.

[12]  Thomas H. Mareci,et al.  Selective inversion radiofrequency pulses by optimal control , 1986 .

[13]  Burkhard Luy,et al.  Tailoring the optimal control cost function to a desired output: application to minimizing phase errors in short broadband excitation pulses. , 2005, Journal of magnetic resonance.

[14]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[15]  G. Bodenhausen,et al.  Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy , 1980 .

[16]  A. Bax,et al.  1H and13C Assignments from Sensitivity-Enhanced Detection of Heteronuclear Multiple-Bond Connectivity by 2D Multiple Quantum NMR , 1986 .

[17]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[18]  J. W. Humberston Classical mechanics , 1980, Nature.

[19]  A. J. Shaka,et al.  Adjustable, broadband, selective excitation with uniform phase. , 2002, Journal of magnetic resonance.

[20]  E. Schneider,et al.  Composite pulses without phase distortion , 1985 .

[21]  M. Garwood,et al.  OPTIMIZED EXCITATION AND AUTOMATION FOR HIGH-RESOLUTION NMR USING B1-INSENSITIVE ROTATION PULSES , 1996 .

[22]  Geoffrey Bodenhausen,et al.  Refocusing with chirped pulses for broadband excitation without phase dispersion , 1989 .

[23]  N. Khaneja,et al.  Construction of universal rotations from point-to-point transformations. , 2005, Journal of magnetic resonance.

[24]  C. Griesinger,et al.  Measurement of long range H,C couplings in natural products in orienting media: a tool for structure elucidation of natural products. , 2003, Journal of magnetic resonance.

[25]  S. Vega,et al.  Derivation of Broadband and Narrowband Excitation Pulses Using the Floquet Formalism , 1993 .

[26]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[27]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[28]  Burkhard Luy,et al.  Exploring the limits of broadband excitation and inversion pulses. , 2004, Journal of magnetic resonance.

[29]  M. Garwood,et al.  Broadband adiabatic refocusing without phase distortion. , 1997, Journal of magnetic resonance.

[30]  Timo O. Reiss,et al.  Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. , 2003, Journal of magnetic resonance.

[31]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[32]  Richard R. Ernst,et al.  Composite pulses constructed by a recursive expansion procedure , 1983 .