A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains

In the frequency domain, gradient-based local-optimization methods of waveform inversions have been unsuccessful at inverting subsurface parameters without an accurate starting model. Such methods could not correct automatically for poor starting models because multiple local minima madeitdifficulttoapproachthetrueglobalminimum.Inthis study,wecomparedthebehaviorofobjectivefunctionsinthe frequency and Laplace domains. Wavefields in the Laplace domain correspond to the zero-frequency component of a damped wavefield; thus, the Laplace-domain waveform inversion can image smooth velocity models. Objective functions in the Laplace-domain inversion have a smoother surface and fewer local minima than in the frequency-domain inversion.Weappliedthewaveforminversiontoa2Dsliceof the acoustic SEG/EAGE salt model in the Laplace domain and recovered smooth velocity models from inaccurate initial velocity conditions.We also successfully imaged velocities of the salt, SEG overthrust, and Institut Francais du PetroleMarmousimodelswiththefrequency-domaininversion method by using the inverted velocity model of the Laplacedomaininversionastheinitialmodel.

[1]  Xin-Quan Ma,et al.  Simultaneous inversion of prestack seismic data for rock properties using simulated annealing , 2002 .

[2]  J. Sheng,et al.  Early arrival waveform tomography on near-surface refraction data , 2006 .

[3]  Velocity Smoothing Before Depth Migration: Does It Help Or Hurt? , 2005 .

[4]  Mrinal K. Sen,et al.  Nonlinear multiparameter optimization using genetic algorithms; inversion of plane-wave seismograms , 1991 .

[5]  P. Lailly,et al.  Pre-stack inversion of a 1-D medium , 1986, Proceedings of the IEEE.

[6]  Xin-Quan Ma,et al.  A constrained global inversion method using an overparameterized scheme : Application to poststack seismic data , 2001 .

[7]  K. Bube,et al.  Hybrid l 1 /l 2 minimization with applications to tomography , 1997 .

[8]  Changsoo Shin,et al.  Comparison of waveform inversion, part 1: conventional wavefield vs logarithmic wavefield , 2007 .

[9]  Side Jin,et al.  Nonlinear velocity inversion by a two-step Monte Carlo method. , 1994 .

[10]  Daniel H. Rothman,et al.  Nonlinear inversion, statistical mechanics, and residual statics estimation , 1985 .

[11]  H. Chauris,et al.  Two-dimensional velocity macro model estimation from seismic reflection data by local differential semblance optimization: applications to synthetic and real data sets , 2001 .

[12]  A. Tarantola,et al.  Two‐dimensional nonlinear inversion of seismic waveforms: Numerical results , 1986 .

[13]  Wafik B. Beydoun,et al.  Reference velocity model estimation from prestack waveforms: Coherency optimization by simulated annealing , 1989 .

[14]  Changsoo Shin,et al.  Waveform inversion using a logarithmic wavefield , 2006 .

[15]  M. Lavielle 2-D Bayesian deconvolution , 1991 .

[16]  W. Symes,et al.  Robust inversion of seismic data using the Huber norm , 2003 .

[17]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[18]  R. G. Pratt,et al.  Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model , 2007 .

[19]  William W. Symes,et al.  Velocity inversion by differential semblance optimization , 1991 .

[20]  Samuel H. Gray,et al.  Velocity smoothing for depth migration: how much is too much? , 2000 .

[21]  Guy Chavent,et al.  Migration‐based traveltime waveform inversion of 2-D simple structures: A synthetic example , 2001 .

[22]  C. Shin,et al.  Improved amplitude preservation for prestack depth migration by inverse scattering theory , 2001 .

[23]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[24]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[25]  J. Z. Zhu,et al.  The finite element method , 1977 .

[26]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[27]  F. Boschetti,et al.  Inversion of seismic refraction data using genetic algorithms , 1996 .

[28]  하완수 A) comparison between the Laplace domain and frequency domain methods for inverting seismic waveforms , 2008 .

[29]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[30]  Tatsuhiko Hara,et al.  Two efficient algorithms for iterative linearized inversion of seismic waveform data , 1993 .

[31]  C. Shin,et al.  Waveform inversion in the Laplace domain , 2008 .

[32]  Roelof Versteeg,et al.  Sensitivity of prestack depth migration to the velocity model , 1993 .

[33]  Kris Vasudevan,et al.  Residual statics estimation using the genetic algorithm , 1994 .

[34]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[35]  Kamal M. Al-Yahya Velocity analysis by iterative profile migration , 1988 .

[36]  Mrinal K. Sen,et al.  Nonlinear one-dimensional seismic waveform inversion using simulated annealing , 1991 .

[37]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .

[38]  Changsoo Shin,et al.  Robust seismic waveform inversion using back‐propagation algorithm , 2007 .