Nanogap-Enhanced Terahertz Sensing of 1 nm Thick (λ/106) Dielectric Films

We experimentally show that terahertz (THz) waves confined in sub-10 nm metallic gaps can detect refractive index changes caused by only a 1 nm thick (∼λ/106) dielectric overlayer. We use atomic layer lithography to fabricate a wafer-scale array of annular nanogaps. Using THz time-domain spectroscopy in conjunction with atomic layer deposition, we measure spectral shifts of a THz resonance peak with increasing Al2O3 film thickness in 1 nm intervals. Because of the enormous mismatch in length scales between THz waves and sub-10 nm gaps, conventional modeling techniques cannot readily be used to analyze our results. We employ an advanced finite-element-modeling (FEM) technique, Hybridizable Discontinuous Galerkin (HDG) scheme, for full three-dimensional modeling of the resonant transmission of THz waves through an annular gap that is 2 nm in width and 32 μm in diameter. Our multiscale 3D FEM technique and atomic layer lithography will enable a series of new investigations in THz nanophotonics that has not b...

[1]  George C Schatz,et al.  Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. , 2005, The journal of physical chemistry. B.

[2]  S. Fan,et al.  Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry , 2009 .

[3]  G. Park,et al.  Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit , 2009 .

[4]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[5]  Minghui Hong,et al.  Spoof Plasmon Surfaces: A Novel Platform for THz Sensing , 2013 .

[6]  Fadi Issam Baida,et al.  Light transmission by subwavelength annular aperture arrays in metallic films , 2002 .

[7]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[8]  Hyungsoon Im,et al.  Vertically oriented sub-10-nm plasmonic nanogap arrays. , 2010, Nano letters.

[9]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[10]  K. Malloy,et al.  Enhanced infrared transmission through subwavelength coaxial metallic arrays. , 2005, Physical review letters.

[11]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[12]  J. Hesthaven,et al.  High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  Fernando Obelleiro,et al.  Toward ultimate nanoplasmonics modeling. , 2014, ACS nano.

[14]  Fadi Issam Baida,et al.  90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays. , 2007, Optics letters.

[15]  Per-Olof Persson,et al.  The Compact Discontinuous Galerkin (CDG) Method for Elliptic Problems , 2007, SIAM J. Sci. Comput..

[16]  Xianji Piao,et al.  Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves , 2013, Nature Communications.

[17]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[18]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[19]  David J. Norris,et al.  Linewidth‐Optimized Extraordinary Optical Transmission in Water with Template‐Stripped Metallic Nanohole Arrays , 2012 .

[20]  Bernardo Cockburn,et al.  Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations , 2011, J. Comput. Phys..

[21]  D. Schötzau,et al.  Stabilized interior penalty methods for the time-harmonic Maxwell equations , 2002 .

[22]  Bernardo Cockburn,et al.  High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics , 2011, J. Comput. Phys..

[23]  D. Grischkowsky,et al.  Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors , 1990 .

[24]  Qianfan Xu,et al.  High-contrast terahertz modulator based on extraordinary transmission through a ring aperture. , 2011, Optics express.

[25]  M. König,et al.  Discontinuous Galerkin methods in nanophotonics , 2011 .

[26]  K. Kavanagh,et al.  Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[27]  Anna M. Fedor,et al.  On the strong and narrow absorption signature in lactose at 0.53THz , 2007 .

[28]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[29]  Hyungsoon Im,et al.  Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes. , 2010, ACS nano.

[30]  Withawat Withayachumnankul,et al.  A Review on Thin-film Sensing with Terahertz Waves , 2012 .

[31]  Stefan A. Maier,et al.  Dual band terahertz waveguiding on a planar metal surface patterned with annular holes , 2010 .

[32]  Ilaria Perugia,et al.  The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations , 2003, Math. Comput..

[33]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[34]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[35]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[36]  I. Al-Naib,et al.  Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy. , 2011, Optics express.

[37]  Esteban Moreno,et al.  Transmission of light through a single rectangular hole. , 2005, Physical review letters.

[38]  Steven M. George,et al.  Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates , 2002 .

[39]  Minghui Hong,et al.  Broadband Terahertz Sensing on Spoof Plasmon Surfaces , 2014 .

[40]  H. Atwater,et al.  Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements. , 2009, Nano letters.

[41]  Derek Abbott,et al.  Sub-diffraction thin-film sensing with planar terahertz metamaterials. , 2011, Optics express.

[42]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[43]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[44]  P. Ajayan,et al.  High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. , 2014, Nano letters.

[45]  Ngoc Cuong Nguyen,et al.  Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics , 2012, J. Comput. Phys..

[46]  Prashant Nagpal,et al.  Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. , 2011, ACS nano.

[47]  Jiangquan Zhang,et al.  Waveguide terahertz time-domain spectroscopy of nanometer water layers. , 2004, Optics letters.

[48]  Michael Nagel,et al.  Integrated planar terahertz resonators for femtomolar sensitivity label-free detection of DNA hybridization. , 2002, Applied optics.

[49]  S. Koo,et al.  Resonance behavior of single ultrathin slot antennas on finite dielectric substrates in terahertz regime , 2010 .

[50]  Namkyoo Park,et al.  Colossal absorption of molecules inside single terahertz nanoantennas. , 2013, Nano letters.

[51]  Sang-Hyun Oh,et al.  Squeezing Millimeter Waves through a Single, Nanometer-wide, Centimeter-long Slit , 2014, Scientific Reports.