Ultra-fast dual-stage vertical positioning for high performance SPMs

A major speed limitation of Scanning Probe Microscopes (SPMs) is the low vertical feedback bandwidth imposed by the mechanical scanner resonances. The vertical feedback controller regulates the tip-sample interaction in application modes such as constant-current scanning tunneling microscopy and constant-force atomic force microscopy. To increase the vertical feedback bandwidth, dual-stage actuators have been proposed to increase the first resonance frequency. In this work, an ultra-fast dual-stage vertical positioner and control system are described. The first resonance frequency of the dual-stage positioner is 88 kHz which permits a one-hundred fold speed increase of a commercial AFM. The dual-stage system is simple, low-cost and can be retrofitted to almost any commercial SPM.

[1]  T. Ando Control techniques in high-speed atomic force microscopy , 2008, 2008 American Control Conference.

[2]  Todd Sulchek,et al.  Dual integrated actuators for extended range high speed atomic force microscopy , 1999 .

[3]  T. Ando,et al.  High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .

[4]  K.K. Leang,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/asjc.090 HIGH-SPEED SERIAL-KINEMATIC SPM SCANNER: DESIGN AND DRIVE CONSIDERATIONS , 2022 .

[5]  S. O. Reza Moheimani,et al.  Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, CDC 2005.

[6]  Mervyn J Miles,et al.  A mechanical microscope: High speed atomic force microscopy , 2005 .

[7]  M.V. Salapaka,et al.  Scanning Probe Microscopy , 2008, IEEE Control Systems.

[8]  Qingze Zou,et al.  An integrated approach to piezoactuator positioning in high-speed atomic force microscope imaging. , 2008, The Review of scientific instruments.

[9]  Andrew J. Fleming,et al.  Evaluation of charge drives for scanning probe microscope positioning stages , 2008, ACC.

[10]  Andrew J. Fleming,et al.  High-speed vertical positioning for contact-mode atomic force microscopy , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[11]  Georg Schitter,et al.  Dual actuation for high-bandwidth nanopositioning , 2008, 2008 47th IEEE Conference on Decision and Control.

[12]  T. Ando,et al.  High-speed Atomic Force Microscopy for Capturing Dynamic Behavior of Protein Molecules at Work , 2005 .

[13]  M. Horton,et al.  Breaking the speed limit with atomic force microscopy , 2007 .

[14]  Andrew J. Fleming,et al.  Optimal Periodic Trajectories for Band-Limited Systems , 2009, IEEE Transactions on Control Systems Technology.

[15]  S O Reza Moheimani,et al.  Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. , 2008, The Review of scientific instruments.

[16]  Chia-Hsiang Menq,et al.  Control of tip-to-sample distance in atomic force microscopy: a dual-actuator tip-motion control scheme. , 2007, The Review of scientific instruments.

[17]  Georg Schitter,et al.  Improving the Speed of AFM by Mechatronic Design and Modern Control MethodsGeschwindigkeitsverbesserung beim AFM mittels mechatronischem Design und modernen Regelmethoden , 2009 .

[18]  P K Hansma,et al.  Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. , 1999, Biophysical journal.

[19]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[20]  Ampere A. Tseng,et al.  Nanofabrication: Fundamentals and Applications , 2008 .

[21]  Karl Johan Åström,et al.  Design and Modeling of a High-Speed AFM-Scanner , 2007, IEEE Transactions on Control Systems Technology.

[22]  G. Borionetti,et al.  Atomic force microscopy: a powerful tool for surface defect and morphology inspection in semiconductor industry , 2004 .

[23]  Antoine Ferreira,et al.  Virtual reality and haptics for nanorobotics , 2006, IEEE Robotics & Automation Magazine.

[24]  T. P. Chen,et al.  Recent developments in tip-based nanofabrication and its roadmap. , 2008, Journal of nanoscience and nanotechnology.

[25]  F. Allgöwer,et al.  Simulation of dynamics-coupling in piezoelectric tube scanners by reduced order finite element analysis. , 2008, The Review of scientific instruments.

[26]  Mervyn J Miles,et al.  Pushing the boundaries of local oxidation nanolithography: short timescales and high speeds. , 2008, Ultramicroscopy.

[27]  M. J. Rost,et al.  Scanning probe microscopes go video rate and beyond , 2005 .

[28]  Andrew J. Fleming,et al.  High‐speed serial‐kinematic SPM scanner: design and drive considerations , 2009 .

[29]  L.Y. Pao,et al.  A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes , 2007, 2007 American Control Conference.

[30]  N. D. Rooij,et al.  Atomic force microscopy using an integrated comb-shape electrostatic actuator for high-speed feedback motion , 2000 .