Quantum secret sharing using the d-dimensional GHZ state

We propose a quantum secret sharing scheme that uses an orthogonal pair of n-qudit GHZ states and local distinguishability. In the proposed protocol, the participants use an X-basis measurement and classical communication to distinguish between the two orthogonal states and reconstruct the original secret. We also present (2, n)-threshold and generalized restricted (2, n)-threshold schemes that enable any two cooperating players from two disjoint groups to always reconstruct the secret. Compared to the existing scheme by Rahaman and Parker (Phys Rev A 91:022330, 2015), the proposed scheme is more general and the access structure contains more authorized sets.

[1]  Huawang Qin,et al.  Verifiable (t, n) threshold quantum secret sharing using d-dimensional Bell state , 2016, Inf. Process. Lett..

[2]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[3]  Sourya Joyee De,et al.  A Proposal for Quantum Rational Secret Sharing , 2015, ArXiv.

[4]  Tzonelih Hwang,et al.  New circular quantum secret sharing for remote agents , 2013, Quantum Inf. Process..

[5]  Huawang Qin,et al.  Proactive quantum secret sharing , 2015, Quantum Inf. Process..

[6]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[7]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[8]  Matthew G. Parker,et al.  Quantum secret sharing based on local distinguishability , 2014, ArXiv.

[9]  Fuguo Deng,et al.  Circular quantum secret sharing , 2006, quant-ph/0612018.

[10]  N. Gisin,et al.  Trojan-horse attacks on quantum-key-distribution systems (6 pages) , 2005, quant-ph/0507063.

[11]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[12]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[13]  李熙涵,et al.  Controlled Teleportation of an Arbitrary Multi-Qudit State in a General Form with d-Dimensional Greenberger-Horne-Zeilinger States , 2007 .

[14]  M. Żukowski,et al.  Secret sharing with a single d -level quantum system , 2015 .

[15]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[16]  Xiao Li,et al.  Increasing the Efficiencies of Random-Choice-Based Quantum Communication Protocols with Delayed Measurement , 2004 .

[17]  Alfredo De Santis,et al.  Graph decompositions and secret sharing schemes , 2004, Journal of Cryptology.

[18]  Massoud Hadian Dehkordi,et al.  Threshold quantum secret sharing between multiparty and multiparty using Greenberger–Horne–Zeilinger state , 2013, Quantum Inf. Process..

[19]  Li Dong,et al.  MULTIPARTY QUANTUM STATE SHARING OF m-QUBIT STATE , 2007 .

[20]  Pradeep Kiran Sarvepalli,et al.  Matroids and Quantum Secret Sharing Schemes , 2009, ArXiv.

[21]  W. Bowen,et al.  Tripartite quantum state sharing. , 2003, Physical review letters.

[22]  Wang Yan,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[23]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[24]  Chun-Wei Yang,et al.  Enhancement on “quantum blind signature based on two-state vector formalism” , 2013, Quantum Inf. Process..

[25]  Gustavo Rigolin,et al.  Generalized quantum-state sharing , 2006 .

[26]  D. Gottesman Theory of quantum secret sharing , 1999, quant-ph/9910067.

[27]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[28]  李春燕,et al.  Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations , 2005 .

[29]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[30]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[31]  L. Hsu,et al.  Quantum secret sharing using product states , 2005 .

[32]  Xiaohua Zhu,et al.  (t, n) Threshold quantum secret sharing using the phase shift operation , 2015, Quantum Inf. Process..

[33]  邓富国,et al.  Increasing the Efficiencies of Random-Choice-Based Quantum Communication Protocols with Delayed Measurement , 2004 .

[34]  Zu-Rong Zhang,et al.  Quantum secret sharing based on quantum error-correcting codes , 2011 .

[35]  Chun-Wei Yang,et al.  Intercept-Resend Attacks on Semi-quantum Secret Sharing and the Improvements , 2011, ArXiv.

[36]  Chun-Wei Yang,et al.  Dynamic quantum secret sharing protocol based on GHZ state , 2014, Quantum Inf. Process..

[37]  Zhou Hong-Yu,et al.  Controlled Teleportation of an Arbitrary Multi-Qudit State in a General Form with d-Dimensional Greenberger Horne Zeilinger States , 2007 .

[38]  Deng Fu-Guo,et al.  Efficient Quantum Cryptography Network without Entanglement and Quantum Memory , 2006 .

[39]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[40]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[41]  Ping Zhou,et al.  Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state , 2005, quant-ph/0511223.

[42]  B. Sanders,et al.  Accessing quantum secrets via local operations and classical communication , 2013, 1305.0805.

[43]  Chun-Wei Yang,et al.  Quantum private comparison of equality protocol without a third party , 2014, Quantum Inf. Process..

[44]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[45]  V. Karimipour,et al.  Quantum secret sharing and random hopping: Using single states instead of entanglement , 2015, 1506.02966.