Information spectrum approach to strong converse theorems for degraded wiretap channels

We consider block codes for degraded wiretap channels in which the legitimate receiver decodes the message with an asymptotic error probability ε but the leakage to the eavesdropper vanishes. For discrete memoryless and Gaussian wiretap channels, we show that the maximum rate of transmission does not depend on ε ϵ [0, 1), i.e., such channels possess the partial strong converse property. Furthermore, we derive sufficient conditions for the partial strong converse property to hold for memoryless but non-stationary symmetric and degraded wiretap channels. Our proof techniques leverage the information spectrum method, which allows us to establish a necessary and sufficient condition for the partial strong converse to hold for general wiretap channels without any information stability assumptions.

[1]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[2]  J. Wolfowitz The coding of messages subject to chance errors , 1957 .

[3]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[4]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[5]  C. L. Chen On a (145, 32) binary cyclic code , 1999, IEEE Trans. Inf. Theory.

[6]  Po-Ning Chen Generalization of Gártner-Ellis Theorem , 2000, IEEE Trans. Inf. Theory.

[7]  Joseph M. Renes,et al.  Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.

[8]  Hiroki Koga,et al.  Information-Spectrum Methods in Information Theory , 2002 .

[9]  Masahito Hayashi,et al.  General nonasymptotic and asymptotic formulas in channel resolvability and identification capacity and their application to the wiretap channel , 2006, IEEE Transactions on Information Theory.

[10]  H. Vincent Poor,et al.  The Role of Signal Processing in Meeting Privacy Challenges: An Overview , 2013, IEEE Signal Processing Magazine.

[11]  Himanshu Tyagi,et al.  Converses For Secret Key Agreement and Secure Computing , 2014, IEEE Transactions on Information Theory.

[12]  Hiroki Koga,et al.  On an upper bound of the secrecy capacity for a general wiretap channel , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[13]  P. Gács,et al.  Bounds on conditional probabilities with applications in multi-user communication , 1976 .

[14]  Andreas J. Winter,et al.  “Pretty Strong” Converse for the Quantum Capacity of Degradable Channels , 2013, IEEE Transactions on Information Theory.

[15]  Himanshu Tyagi,et al.  Secret Key Agreement: General Capacity and Second-Order Asymptotics , 2016, IEEE Trans. Inf. Theory.

[16]  N. Fisher,et al.  Probability Inequalities for Sums of Bounded Random Variables , 1994 .

[17]  Matthieu R. Bloch,et al.  Physical-Layer Security: From Information Theory to Security Engineering , 2011 .

[18]  Toshiyasu Matsushima,et al.  An Algorithm for Computing the Secrecy Capacity of Broadcast Channels with Confidential Messages , 2007, 2007 IEEE International Symposium on Information Theory.

[19]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[20]  Hirosuke Yamamoto,et al.  Secure Multiplex Coding Attaining Channel Capacity in Wiretap Channels , 2013, IEEE Transactions on Information Theory.

[21]  Himanshu Tyagi,et al.  How many queries will resolve common randomness? , 2013, 2013 IEEE International Symposium on Information Theory.

[22]  Vincent Yan Fu Tan,et al.  A Tight Upper Bound for the Third-Order Asymptotics for Most Discrete Memoryless Channels , 2012, IEEE Transactions on Information Theory.

[23]  Masahide Sasaki,et al.  Reliability and Secrecy Functions of the Wiretap Channel Under Cost Constraint , 2013, IEEE Transactions on Information Theory.

[24]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[25]  Vincent Yan Fu Tan,et al.  Second-Order Coding Rates for Channels With State , 2013, IEEE Transactions on Information Theory.

[26]  Gregory W. Wornell,et al.  Secure Broadcasting Over Fading Channels , 2008, IEEE Transactions on Information Theory.

[27]  Amiel Feinstein,et al.  Information and information stability of random variables and processes , 1964 .

[28]  R. Durrett Probability: Theory and Examples , 1993 .

[29]  S. K. Leung-Yan-Cheong On a special class of wiretap channels , 1976 .

[30]  Aylin Yener,et al.  MIMO Wiretap Channels with Arbitrarily Varying Eavesdropper Channel States , 2010, ArXiv.

[31]  Suguru Arimoto,et al.  On the converse to the coding theorem for discrete memoryless channels (Corresp.) , 1973, IEEE Trans. Inf. Theory.

[32]  Vincent Y. F. Tan,et al.  Second- and Higher-Order Asymptotics For Erasure and List Decoding , 2014, ArXiv.

[33]  Ueli Maurer,et al.  Information-Theoretic Key Agreement: From Weak to Strong Secrecy for Free , 2000, EUROCRYPT.

[34]  Matthieu R. Bloch,et al.  Strong Secrecy From Channel Resolvability , 2011, IEEE Transactions on Information Theory.

[35]  Te Sun Han,et al.  An Information-Spectrum Approach to Capacity Theorems for the General Multiple-Access Channel , 1998, IEEE Trans. Inf. Theory.

[36]  J. N. Laneman,et al.  On the secrecy capacity of arbitrary wiretap channels , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[37]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[38]  Vincent Y. F. Tan A Formula for the Capacity of the General Gel'fand-Pinsker Channel , 2014, IEEE Trans. Commun..

[39]  Aaron B. Wagner,et al.  The Degraded Poisson Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[40]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[41]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[42]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[43]  Himanshu Tyagi,et al.  A Bound For Multiparty Secret Key Agreement And Implications For A Problem Of Secure Computing , 2014, IACR Cryptol. ePrint Arch..

[44]  S. Verdú,et al.  Arimoto channel coding converse and Rényi divergence , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[45]  Himanshu Tyagi,et al.  Strong converse for a degraded wiretap channel via active hypothesis testing , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[46]  Sergio Verdú,et al.  Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.

[47]  Fady Alajaji,et al.  Optimistic Shannon coding theorems for arbitrary single-user systems , 1999, IEEE Trans. Inf. Theory.

[48]  Masahito Hayashi,et al.  Exponential Decreasing Rate of Leaked Information in Universal Random Privacy Amplification , 2009, IEEE Transactions on Information Theory.

[49]  Graeme Smith Private classical capacity with a symmetric side channel and its application to quantum cryptography , 2007, 0705.3838.

[50]  Marten van Dijk On a special class of broadcast channels with confidential messages , 1997, IEEE Trans. Inf. Theory.

[51]  Himanshu Tyagi,et al.  Secret Key Agreement: General Capacity and Second-Order Asymptotics , 2014, IEEE Transactions on Information Theory.

[52]  Sik K. Leung-Yan-Cheong On a special class of wiretap channels (Corresp.) , 1977, IEEE Trans. Inf. Theory.

[53]  Yossef Steinberg New Converses in the Theory of Identification via Channels , 1998, IEEE Trans. Inf. Theory.

[54]  Masahito Hayashi,et al.  Strong converse and second-order asymptotics of channel resolvability , 2014, 2014 IEEE International Symposium on Information Theory.