Meta-analysis of genome-wide association studies of HDL cholesterol response to statins

Background In addition to lowering low density lipoprotein cholesterol (LDL-C), statin therapy also raises high density lipoprotein cholesterol (HDL-C) levels. Inter-individual variation in HDL-C response to statins may be partially explained by genetic variation. Methods and results We performed a meta-analysis of genome-wide association studies (GWAS) to identify variants with an effect on statin-induced high density lipoprotein cholesterol (HDL-C) changes. The 123 most promising signals with p<1×10−4 from the 16 769 statin-treated participants in the first analysis stage were followed up in an independent group of 10 951 statin-treated individuals, providing a total sample size of 27 720 individuals. The only associations of genome-wide significance (p<5×10−8) were between minor alleles at the CETP locus and greater HDL-C response to statin treatment. Conclusions Based on results from this study that included a relatively large sample size, we suggest that CETP may be the only detectable locus with common genetic variants that influence HDL-C response to statins substantially in individuals of European descent. Although CETP is known to be associated with HDL-C, we provide evidence that this pharmacogenetic effect is independent of its association with baseline HDL-C levels.

Joshua C Denny | Wei-Qi Wei | Fredrik Nyberg | Eric Boerwinkle | Jean-Claude Tardif | Vilmundur Gudnason | Thomas Lumley | Tamara B Harris | Deborah A Nickerson | Alice Stanton | Kenneth Rice | Colin N A Palmer | Til Stürmer | Fernando Rivadeneira | Christopher J O'Donnell | Eric A Whitsel | Bruce M Psaty | QiPing Feng | Albert Hofman | Xiuqing Guo | André G Uitterlinden | John Betteridge | Joshua C Bis | Stella Trompet | J Wouter Jukema | Michael R Barnes | Russell A Wilke | Oscar H Franco | L Adrienne Cupples | Stephen S Rich | Nicholas L Smith | Eoin O'Brien | Daniel I Chasman | Paul M Ridker | Gudny Eiriksdottir | Xiaohui Li | Denis C Shields | Ramachandran S Vasan | Naveed Sattar | Bruno H Stricker | O. Franco | A. Hofman | A. Uitterlinden | T. Lumley | E. Boerwinkle | D. Nickerson | S. Cummings | Joshua D. Smith | P. Ridker | D. Chasman | R. Krauss | P. Munroe | M. Caulfield | G. Hitman | V. Gudnason | R. Vasan | F. Rivadeneira | Yongmei Liu | B. Psaty | A. Stanton | E. O’Brien | M. Barnes | A. Neil | B. Stricker | N. Sattar | K. Taylor | J. Rotter | P. McKeigue | J. Denny | T. Harris | N. Sotoodehnia | K. Rice | A. D. de Craen | P. Slagboom | L. Cupples | J. Tardif | Xiuqing Guo | J. Jukema | C. O’Donnell | R. Westendorp | R. Wilke | J. Bis | T. Stürmer | Wei-Qi Wei | S. Rich | S. Shaw-Hawkins | Daniel S. Evans | G. Eiriksdottir | S. Heckbert | W. Post | H. Warren | N. Poulter | P. Sever | B. J. Barratt | C. Ballantyne | M. Dubé | Ching‐Ti Liu | C. Palmer | Xiaohui Li | J. Kastelein | G. Hovingh | J. Jukema | D. Shields | A. Arnold | S. Boekholdt | S. Trompet | B. Buckley | D. Stott | I. Ford | I. Postmus | Q. Feng | Y. I. Chen | B. Stricker | C. Stein | C. Avery | N. Smith | H. Colhoun | F. Nyberg | E. Whitsel | K. Wiggins | L. Launer | P. Durrington | B. Arsenault | J. Stafford | J. Betteridge | R. Smit | F. Sun | Neil Poulter | Yongmei Liu | P Eline Slagboom | Peter Sever | Ian Ford | Nona Sotoodehnia | Susan R Heckbert | Mark J Caulfield | Charles M Stein | David J Stott | Albert V Smith | Wendy Post | Jerome I Rotter | Rudi G J Westendorp | Joshua D Smith | Ching-Ti Liu | Andrew Neil | Brendan M Buckley | Ronald M Krauss | Alice M Arnold | Patricia B Munroe | Paul M McKeigue | Christie M Ballantyne | Anton J M de Craen | G. Hovingh | Steven R Cummings | Daniel S Evans | G Kees Hovingh | Bryan J Barratt | Paul N Durrington | Kent D Taylor | Sue Shaw-Hawkins | Helen R Warren | Graham Hitman | Iris Postmus | S Matthijs Boekholdt | John J P Kastelein | Benoit J Arsenault | C. D. de Keyser | Kerri L Wiggins | Helen M Colhoun | Harshal A Deshmukh | Fangui Sun | Christy L Avery | Jeanette M Stafford | Catherine E de Keyser | Roelof A J Smit | Y-D Ida Chen | Marie Pierre Dubé | Leonore J Launer | H. Deshmukh | S. Rich | A. Smith | C. M. Stein | R. Krauss | Josh C. Denny | D. S. Evans | D. Shields | A. Smith | A. Uitterlinden | Deborah A. Nickerson | P. Slagboom | A. Hofman | B. Psaty | T. B. Harris | Y. Chen | Christopher J. O'Donnell | Jerome I. Rotter | P. N. Durrington | J. Kastelein | C. M. Stein | Xiaohui Li | Kent D. Taylor | D. Stott | A. de Craen | R. Westendorp | B. Buckley | Denis C. Shields | Benoit J. Arsenault | Russell A Wilke | B. Psaty | Ronald M. Krauss | A. Arnold | D. A. Nickerson | Christopher J. O’Donnell | Oscar H. Franco | Nicholas L. Smith | Joshua C. Denny | HA Deshmukh | P. McKeigue | L. A. Cupples | Michael R Barnes | Y-D Ida Chen | Steven R. Cummings | Tamara B. Harris | G. Hovingh | C. N. Palmer

[1]  Matti Pirinen,et al.  Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins , 2014, Nature Communications.

[2]  Sarah Parish,et al.  Effects of extended-release niacin with laropiprant in high-risk patients. , 2014, The New England journal of medicine.

[3]  B. Deng,et al.  Relationship between the cholesterol ester transfer protein TaqIB polymorphism and the lipid-lowering effect of atorvastatin in patients with coronary atherosclerotic heart disease. , 2014, Genetics and molecular research : GMR.

[4]  P. Ridker,et al.  Cholesteryl Ester Transfer Protein Polymorphisms, Statin Use, and Their Impact on Cholesterol Levels and Cardiovascular Events , 2014, Clinical pharmacology and therapeutics.

[5]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[6]  Tanya M. Teslovich,et al.  Discovery and refinement of loci associated with lipid levels , 2013, Nature Genetics.

[7]  A. Morris,et al.  Robust association of the LPA locus with low-density lipoprotein cholesterol lowering response to statin treatment in a meta-analysis of 30 467 individuals from both randomized control trials and observational studies and association with coronary artery disease outcome during statin treatment , 2013, Pharmacogenetics and genomics.

[8]  P. Ridker,et al.  Levels and Changes of HDL Cholesterol and Apolipoprotein A-I in Relation to Risk of Cardiovascular Events Among Statin-Treated Patients: A Meta-Analysis , 2013, Circulation.

[9]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[10]  John Spertus,et al.  Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study , 2012, The Lancet.

[11]  P. Visscher,et al.  Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.

[12]  P. Ridker,et al.  Genetic Determinants of Statin-Induced Low-Density Lipoprotein Cholesterol Reduction: The Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) Trial , 2012, Circulation. Cardiovascular genetics.

[13]  Sonia Shah,et al.  Cholesteryl Ester Transfer Protein (CETP) Polymorphisms Affect mRNA Splicing, HDL Levels, and Sex-Dependent Cardiovascular Risk , 2012, PloS one.

[14]  Karen L. Mohlke,et al.  Novel Loci for Adiponectin Levels and Their Influence on Type 2 Diabetes and Metabolic Traits: A Multi-Ethnic Meta-Analysis of 45,891 Individuals , 2012, PLoS genetics.

[15]  William Weintraub,et al.  Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. , 2011, The New England journal of medicine.

[16]  G. Abecasis,et al.  MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.

[17]  R. Collins,et al.  Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials , 2010, The Lancet.

[18]  R. Collins,et al.  Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials , 2010, The Lancet.

[19]  M. Gnant,et al.  Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials , 2010 .

[20]  Tanya M. Teslovich,et al.  Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids , 2010, Nature.

[21]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[22]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[23]  Paul T. Williams,et al.  Genome-Wide Association of Lipid-Lowering Response to Statins in Combined Study Populations , 2010, PloS one.

[24]  G. Moneta,et al.  Major Lipids, Apolipoproteins, and Risk of Vascular Disease , 2010 .

[25]  J. Danesh,et al.  Major lipids, apolipoproteins, and risk of vascular disease. , 2009, JAMA.

[26]  P. Jones,et al.  Effects of Statins on High-Density Lipoproteins: A Potential Contribution to Cardiovascular Benefit , 2008, Cardiovascular Drugs and Therapy.

[27]  J. Jukema,et al.  Atorvastatin increases HDL cholesterol by reducing CETP expression in cholesterol-fed APOE*3-Leiden.CETP mice. , 2008, Atherosclerosis.

[28]  G. Kolovou,et al.  Pharmacogenetic study of cholesteryl ester transfer protein gene and simvastatin treatment in hypercholesterolaemic subjects , 2007, Expert opinion on pharmacotherapy.

[29]  Joanne M. Meyer,et al.  Genetic analysis of fluvastatin response and dyslipidemia in renal transplant recipientss⃞ Published, JLR Papers in Press, June 11, 2007. , 2007, Journal of Lipid Research.

[30]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[31]  M. Stephens,et al.  Imputation-Based Analysis of Association Studies: Candidate Regions and Quantitative Traits , 2007, PLoS genetics.

[32]  Paul Schoenhagen,et al.  Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. , 2007, JAMA.

[33]  L. Havekes,et al.  Cholesteryl ester transfer protein inhibition: effect on reverse cholesterol transport? , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[34]  L. Kleinberg,et al.  The association of common SNPs and haplotypes in the CETP and MDR1 genes with lipids response to fluvastatin in familial hypercholesterolemia. , 2006, Atherosclerosis.

[35]  P J Talmud,et al.  Cholesteryl Ester Transfer Protein TaqIB Variant, High-Density Lipoprotein Cholesterol Levels, Cardiovascular Risk, and Efficacy of Pravastatin Treatment: Individual Patient Meta-Analysis of 13 677 Subjects , 2005, Circulation.

[36]  M. Davidson,et al.  Comparative effects of lipid-lowering therapies. , 2004, Progress in cardiovascular diseases.

[37]  John H Fuller,et al.  Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial , 2004, The Lancet.

[38]  Toshihiro Tanaka The International HapMap Project , 2003, Nature.

[39]  A. van Tol,et al.  Dose-dependent action of atorvastatin in type IIB hyperlipidemia: preferential and progressive reduction of atherogenic apoB-containing lipoprotein subclasses (VLDL-2, IDL, small dense LDL) and stimulation of cellular cholesterol efflux. , 2002, Atherosclerosis.

[40]  J W Jukema,et al.  The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. , 1998, The New England journal of medicine.

[41]  G. Ponsin,et al.  Simvastatin-induced decrease in the transfer of cholesterol esters from high density lipoproteins to very low and low density lipoproteins in normolipidemic subjects. , 1993, Atherosclerosis.