Distributed Covariance Estimation in

We consider distributed estimation of the inverse covariance matrix in Gaussian graphical models. These models factorize the multivariate distribution and allow for efficient dis- tributedsignalprocessingmethodssuchasbeliefpropagation(BP). The classical maximum likelihood approach to this covariance estimation problem, or potential function estimation in BP ter- minology, requires centralized computing and is computationally intensive. This motivates suboptimal distributed alternatives that tradeoff accuracy for communication cost. A natural solution is for each node to perform estimation of its local covariance with respect to its neighbors. The localmaximum likelihoodestimator is asymptotically consistent but suboptimal, i.e., it does not minimize mean squared estimation (MSE) error. We propose to improve the MSEperformancebyintroducingadditionalsymmetryconstraints using averaging and pseudolikelihood estimation approaches. We compute the proposed estimates using message passing protocols, which can be efficiently implemented in large scale graphical models with many nodes. We illustrate the advantages of our proposed methods using numerical experiments with synthetic data as well as real world data from a wireless sensor network.

[1]  Harry Joe,et al.  Composite Likelihood Methods , 2012 .

[2]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[3]  Gonzalo Mateos,et al.  Distributed Sparse Linear Regression , 2010, IEEE Transactions on Signal Processing.

[4]  Qing Ling,et al.  Decentralized Sparse Signal Recovery for Compressive Sleeping Wireless Sensor Networks , 2010, IEEE Transactions on Signal Processing.

[5]  Alfred O. Hero,et al.  Covariance Estimation in Decomposable Gaussian Graphical Models , 2009, IEEE Transactions on Signal Processing.

[6]  Ioannis D. Schizas,et al.  Distributed LMS for Consensus-Based In-Network Adaptive Processing , 2009, IEEE Transactions on Signal Processing.

[7]  Guy Lebanon,et al.  Statistical and Computational Tradeoffs in Stochastic Composite Likelihood , 2009, AISTATS.

[8]  Alfred O. Hero,et al.  Decomposable Principal Component Analysis , 2009, IEEE Transactions on Signal Processing.

[9]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[10]  Bin Yu,et al.  High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence , 2008, 0811.3628.

[11]  Dmitry M. Malioutov,et al.  Low-Rank Variance Approximation in GMRF Models: Single and Multiscale Approaches , 2008, IEEE Transactions on Signal Processing.

[12]  Vwani P. Roychowdhury,et al.  Covariance selection for nonchordal graphs via chordal embedding , 2008, Optim. Methods Softw..

[13]  P. Zhao,et al.  A path following algorithm for Sparse Pseudo-Likelihood Inverse Covariance Estimation (SPLICE) , 2008, 0807.3734.

[14]  Michael I. Jordan,et al.  An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators , 2008, ICML '08.

[15]  Venkat Chandrasekaran,et al.  Estimation in Gaussian Graphical Models Using Tractable Subgraphs: A Walk-Sum Analysis , 2008, IEEE Transactions on Signal Processing.

[16]  Petre Stoica,et al.  On Estimation of Covariance Matrices With Kronecker Product Structure , 2008, IEEE Transactions on Signal Processing.

[17]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[18]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[19]  Alejandro Ribeiro,et al.  Consensus in Ad Hoc WSNs With Noisy Links—Part I: Distributed Estimation of Deterministic Signals , 2008, IEEE Transactions on Signal Processing.

[20]  Martin J. Wainwright,et al.  Estimating the "Wrong" Graphical Model: Benefits in the Computation-Limited Setting , 2006, J. Mach. Learn. Res..

[21]  Dmitry M. Malioutov,et al.  Walk-Sums and Belief Propagation in Gaussian Graphical Models , 2006, J. Mach. Learn. Res..

[22]  Richard G. Baraniuk,et al.  Robust Distributed Estimation Using the Embedded Subgraphs Algorithm , 2006, IEEE Transactions on Signal Processing.

[23]  A.S. Willsky,et al.  Distributed fusion in sensor networks , 2006, IEEE Signal Processing Magazine.

[24]  Martin J. Wainwright,et al.  Distributed fusion in sensor networks: a graphical models perspective , 2006 .

[25]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[26]  E.R. Dougherty,et al.  Research issues in genomic signal processing , 2005, IEEE Signal Processing Magazine.

[27]  Dmitry M. Malioutov,et al.  Walk-Sum Interpretation and Analysis of Gaussian Belief Propagation , 2005, NIPS.

[28]  Zhi-Quan Luo,et al.  Distributed Estimation Using Reduced-Dimensionality Sensor Observations , 2005, IEEE Transactions on Signal Processing.

[29]  Martin J. Wainwright,et al.  Embedded trees: estimation of Gaussian Processes on graphs with cycles , 2004, IEEE Transactions on Signal Processing.

[30]  Wei Hong,et al.  Model-Driven Data Acquisition in Sensor Networks , 2004, VLDB.

[31]  C. Guestrin,et al.  Distributed regression: an efficient framework for modeling sensor network data , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[32]  Yee Whye Teh,et al.  On Improving the Efficiency of the Iterative Proportional Fitting Procedure , 2003, AISTATS.

[33]  William T. Freeman,et al.  Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology , 1999, Neural Computation.

[34]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[35]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[36]  Alfred O. Hero,et al.  Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.

[37]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[38]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[39]  S. J. Press,et al.  Applied Multivariate Analysis. , 1973 .