Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure

Electrical manipulation of skyrmions attracts considerable attention for its rich physics and promising applications. To date, such a manipulation is realized mainly via spin-polarized current based on spin-transfer torque or spin–orbital torque effect. However, this scheme is energy consuming and may produce massive Joule heating. To reduce energy dissipation and risk of heightened temperatures of skyrmion-based devices, an effective solution is to use electric field instead of current as stimulus. Here, we realize an electric-field manipulation of skyrmions in a nanostructured ferromagnetic/ferroelectrical heterostructure at room temperature via an inverse magneto-mechanical effect. Intriguingly, such a manipulation is non-volatile and exhibits a multistate feature. Numerical simulations indicate that the electric-field manipulation of skyrmions originates from strain-mediated modification of effective magnetic anisotropy and Dzyaloshinskii–Moriya interaction. Our results open a direction for constructing low-energy-dissipation, non-volatile, and multistate skyrmion-based spintronic devices. Spin-polarized current manipulation of magnetic skyrmions is energy consuming. Here, the authors achieve an electric-field manipulation of individual skyrmions in a nanostructured ferromagnetic/ferroelectrical heterostructure at room temperature via an inverse magneto-mechanical effect.

[1]  Yan Zhou,et al.  Skyrmions in Magnetic Tunnel Junctions. , 2018, ACS applied materials & interfaces.

[2]  M. Mochizuki,et al.  Current-induced skyrmion dynamics in constricted geometries. , 2013, Nature nanotechnology.

[3]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[4]  D. Pierce,et al.  Spatially Resolved Electric‐Field Manipulation of Magnetism for CoFeB Mesoscopic Discs on Ferroelectrics , 2018, Advanced functional materials.

[5]  Steiner,et al.  Exchange stiffness, magnetization, and spin waves in cubic and hexagonal phases of cobalt. , 1996, Physical review. B, Condensed matter.

[6]  H. Béa,et al.  Large-Voltage Tuning of Dzyaloshinskii-Moriya Interactions: A Route toward Dynamic Control of Skyrmion Chirality. , 2018, Nano letters.

[7]  S. Eisebitt,et al.  Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet , 2018, Nature Nanotechnology.

[8]  N. Mehmood,et al.  Construction of a Room-Temperature Pt/Co/Ta Multilayer Film with Ultrahigh-Density Skyrmions for Memory Application. , 2019, ACS applied materials & interfaces.

[9]  P. Ho,et al.  Geometrically Tailored Skyrmions at Zero Magnetic Field in Multilayered Nanostructures , 2019, Physical Review Applied.

[10]  Yan Zhou,et al.  Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films , 2017, Nature Communications.

[11]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[12]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[13]  F. Hu,et al.  A Centrosymmetric Hexagonal Magnet with Superstable Biskyrmion Magnetic Nanodomains in a Wide Temperature Range of 100–340 K , 2016, Advanced materials.

[14]  N. Nagaosa,et al.  Dynamics of Skyrmion crystals in metallic thin films. , 2011, Physical review letters.

[15]  S. Eisebitt,et al.  Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques. , 2017, Nature nanotechnology.

[16]  Hideo Ohno,et al.  Electric field control of Skyrmions in magnetic nanodisks , 2016 .

[17]  A. Fert,et al.  Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature , 2018, Nature Nanotechnology.

[18]  G. Bihlmayer,et al.  Dzyaloshinskii-Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/W(110) , 2008 .

[19]  Kang L. Wang,et al.  Direct observation of the skyrmion Hall effect , 2016, Nature Physics.

[20]  C. Pfleiderer,et al.  Unwinding of a Skyrmion Lattice by Magnetic Monopoles , 2013, Science.

[21]  Yan Zhou,et al.  Chopping skyrmions from magnetic chiral domains with uniaxial stress in magnetic nanowire , 2017 .

[22]  Ono,et al.  Magnetic vortex core observation in circular dots of permalloy , 2000, Science.

[23]  Qinghua Zhang,et al.  Electric-Field Modulation of Interface Magnetic Anisotropy and Spin Reorientation Transition in (Co/Pt)3/PMN-PT Heterostructure. , 2017, ACS applied materials & interfaces.

[24]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[25]  I L Prejbeanu,et al.  Correlated magnetic vortex chains in mesoscopic cobalt dot arrays. , 2002, Physical review letters.

[26]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[27]  Yong Peng,et al.  Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field , 2018 .

[28]  Ming Liu,et al.  Voltage Control of Perpendicular Magnetic Anisotropy in Multiferroic ( Co / Pt ) 3 / PbMg 1 / 3 Nb 2 / 3 O 3 − PbTiO 3 Heterostructures , 2017 .

[29]  M. Sapozhnikov,et al.  Manipulation of the Dzyaloshinskii-Moriya Interaction in Co/Pt Multilayers with Strain. , 2020, Physical review letters.

[30]  Kang L. Wang,et al.  Electric-field guiding of magnetic skyrmions , 2015, 1505.03972.

[31]  M. Cantoni,et al.  In Situ Electric Field Skyrmion Creation in Magnetoelectric Cu2OSeO3. , 2017, Nano letters.

[32]  T. Johansen,et al.  Exact asymptotic behavior of magnetic stripe domain arrays , 2012, 1211.1366.

[33]  Kang L. Wang,et al.  Room-Temperature Creation and Spin-Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry. , 2016, Nano letters.

[34]  Masashi Kawasaki,et al.  Current‐Induced Nucleation and Annihilation of Magnetic Skyrmions at Room Temperature in a Chiral Magnet , 2017, Advanced materials.

[35]  M Kubota,et al.  Large anisotropic deformation of skyrmions in strained crystal. , 2015, Nature nanotechnology.

[36]  A. Stashkevich,et al.  Current-induced skyrmion generation and dynamics in symmetric bilayers , 2016, Nature Communications.

[37]  S. Auffret,et al.  Mapping different skyrmion phases in double wedges of Ta/FeCoB/TaOx trilayers , 2019, Physical Review B.

[38]  J. White,et al.  Electric-field-induced Skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3. , 2014, Physical review letters.

[39]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[40]  Yuan Yao,et al.  Manipulating the Topology of Nanoscale Skyrmion Bubbles by Spatially Geometric Confinement. , 2019, ACS nano.

[41]  Yan Zhou Magnetic skyrmions: intriguing physics and new spintronic device concepts , 2018, National science review.

[42]  Yan Zhou,et al.  Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles. , 2017, Nano letters.

[43]  Dispersive Stiffness of Dzyaloshinskii Domain Walls. , 2016, Physical review letters.

[44]  Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect , 2015, Nature communications.

[45]  M. Mochizuki,et al.  Universal current-velocity relation of skyrmion motion in chiral magnets , 2013, Nature Communications.

[46]  Electric-field-driven switching of individual magnetic skyrmions. , 2016, Nature nanotechnology.

[47]  H. Béa,et al.  The Skyrmion Switch: Turning Magnetic Skyrmion Bubbles on and off with an Electric Field. , 2016, Nano letters.

[48]  R. Wiesendanger Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics , 2016 .

[49]  Ryotaro Arita,et al.  Control of Dzyaloshinskii-Moriya interaction in Mn1−xFexGe: a first-principles study , 2015, Scientific Reports.

[50]  Achim Rosch,et al.  Skyrmions: Moving with the current. , 2013, Nature nanotechnology.

[51]  Long-qing Chen,et al.  Strain-mediated voltage-controlled switching of magnetic skyrmions in nanostructures , 2018, npj Computational Materials.