Sea ice volume variability and water temperature in the Greenland Sea

Abstract. This study explores a link between the long-term variations in the integral sea ice volume (SIV) in the Greenland Sea and oceanic processes. Using the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS, 1979–2016), we show that the increasing sea ice volume flux through Fram Strait goes in parallel with a decrease in SIV in the Greenland Sea. The overall SIV loss in the Greenland Sea is 113 km3 per decade, while the total SIV import through Fram Strait increases by 115 km3 per decade. An analysis of the ocean temperature and the mixed-layer depth (MLD) over the climatic mean area of the winter marginal sea ice zone (MIZ) revealed a doubling of the amount of the upper-ocean heat content available for the sea ice melt from 1993 to 2016. This increase alone can explain the SIV loss in the Greenland Sea over the 24-year study period, even when accounting for the increasing SIV flux from the Arctic. The increase in the oceanic heat content is found to be linked to an increase in temperature of the Atlantic Water along the main currents of the Nordic Seas, following an increase in the oceanic heat flux from the subtropical North Atlantic. We argue that the predominantly positive winter North Atlantic Oscillation (NAO) index during the 4 most recent decades, together with an intensification of the deep convection in the Greenland Sea, is responsible for the intensification of the cyclonic circulation pattern in the Nordic Seas, which results in the observed long-term variations in the SIV.

[1]  Ø. Skagseth,et al.  Mechanisms of Ocean Heat Anomalies in the Norwegian Sea , 2019, Journal of Geophysical Research: Oceans.

[2]  J. Pietrzak,et al.  Pathways and watermass transformation of Atlantic Water entering the Nordic Seas through Denmark Strait in two high resolution ocean models , 2019, Deep Sea Research Part I: Oceanographic Research Papers.

[3]  G. Moore,et al.  Water Mass Transformation in the Greenland Sea during the Period 1986–2016 , 2019, Journal of Physical Oceanography.

[4]  L. Bertino,et al.  Quantifying Atlantic Water transport to the Nordic Seas by remote sensing , 2018, Remote Sensing of Environment.

[5]  T. Krumpen,et al.  Satellite-derived sea ice export and its impact on Arctic ice mass balance , 2018, The Cryosphere.

[6]  Ø. Skagseth,et al.  Role of Greenland Sea Gyre Circulation on Atlantic Water Temperature Variability in the Fram Strait , 2018, Geophysical Research Letters.

[7]  Wilken-Jon von Appen,et al.  Observations of a Submesoscale Cyclonic Filament in the Marginal Ice Zone , 2018, Geophysical Research Letters.

[8]  J. Stroeve,et al.  Seasonal and Regional Manifestation of Arctic Sea Ice Loss , 2018, Journal of Climate.

[9]  M. Spall,et al.  Ocean convection linked to the recent ice edge retreat along east Greenland , 2018, Nature Communications.

[10]  K. A. Mork,et al.  Continued warming, salinification and oxygenation of the Greenland Sea gyre , 2018 .

[11]  P. Moth,et al.  VIIRS Data and Data Access at the NASA National Snow and Ice Data Center Distributed Active Archive Center , 2017 .

[12]  Lars Kaleschke,et al.  A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data , 2017 .

[13]  A. Olsen,et al.  Arctic Intermediate Water in the Nordic Seas, 1991–2009 , 2017 .

[14]  M. Lozier,et al.  Assessing variability in the size and strength of the North Atlantic subpolar gyre , 2017 .

[15]  A. Thurnherr,et al.  Evolution of the East Greenland Current from Fram Strait to Denmark Strait: Synoptic measurements from summer 2012 , 2017 .

[16]  D. Quadfasel,et al.  Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets , 2016 .

[17]  S. Hendricks,et al.  User Guide - AWI CryoSat-2 Sea Ice Thickness Data Product (v1.2) , 2016 .

[18]  T. Krumpen,et al.  Online sea-ice knowledge and data platform , 2016 .

[19]  K. Kloster,et al.  Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years , 2016 .

[20]  T. Hattermann,et al.  Eddy‐driven recirculation of Atlantic Water in Fram Strait , 2016 .

[21]  John Marshall,et al.  Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review , 2016 .

[22]  Frank Kauker,et al.  Empirical error functions for monthly mean Arctic sea-ice drift , 2015 .

[23]  G. Moore,et al.  Water mass transformation in the Iceland Sea , 2015 .

[24]  Kjetil Våge,et al.  Decreasing intensity of open-ocean convection in the Greenland and Iceland seas , 2015 .

[25]  S. Rahmstorf,et al.  Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation , 2015 .

[26]  M. Rhein,et al.  Advection of North Atlantic Deep Water from the Labrador Sea to the southern hemisphere , 2015 .

[27]  D. Seidov,et al.  The role of the Atlantic Water in multidecadal ocean variability in the Nordic and Barents Seas , 2015 .

[28]  T. Eldevik,et al.  Atlantic origin of observed and modelled freshwater anomalies in the Nordic Seas , 2014 .

[29]  Robert Ricker,et al.  Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation , 2014 .

[30]  Thomas Lavergne,et al.  An intercomparison of Arctic ice drift products to deduce uncertainty estimates , 2014 .

[31]  N. Serra,et al.  Causes of Decadal Changes of the Freshwater Content in the Arctic Ocean , 2014 .

[32]  W. Walczowski Atlantic Water in the Nordic Seas: Properties, Variability, Climatic Importance , 2013 .

[33]  Bengamin I. Moat,et al.  Observed decline of the Atlantic meridional overturning circulation 2004–2012 , 2013 .

[34]  P. Eriksson,et al.  Recirculation in the Fram Strait and transports of water in and north of the Fram Strait derived from CTD data , 2013 .

[35]  C. Katsman,et al.  Detecting Labrador Sea Water formation from space , 2013 .

[36]  Ø. Skagseth,et al.  One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic , 2013, Nature Communications.

[37]  R. Morrow,et al.  A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements , 2012 .

[38]  P. L. Traon,et al.  High Resolution 3-D temperature and salinity fields derived from in situ and satellite observations , 2012 .

[39]  Eberhard Fahrbach,et al.  Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997-2010 , 2012 .

[40]  E. Falck,et al.  Changes in the properties and distribution of the intermediate and deep waters in the Fram Strait , 2012 .

[41]  C. Cassou,et al.  Greenland Sea sea ice variability over 1979–2007 and its link to the surface atmosphere , 2011 .

[42]  C. Mertens,et al.  Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic , 2011 .

[43]  Ron Kwok,et al.  Uncertainty in modeled Arctic sea ice volume , 2011 .

[44]  Brian J. Hoskins,et al.  Variability of the North Atlantic eddy‐driven jet stream , 2010 .

[45]  Hajo Eicken,et al.  Growth, Structure and Properties of Sea Ice , 2010 .

[46]  Lars Kaleschke,et al.  Climatology of the Nordic (Irminger, Greenland, Barents, Kara and White/Pechora) Seas ice cover based on 85 GHz satellite microwave radiometry: 1992–2008 , 2010 .

[47]  D. Quadfasel,et al.  Seasonal to inter-annual variability of temperature and salinity in the Greenland Sea Gyre: heat and freshwater budgets , 2010 .

[48]  Stefan Kern,et al.  Fram Strait sea ice volume export estimated between 2003 and 2008 from satellite data , 2009 .

[49]  Waldemar Walczowski,et al.  Warming of the West Spitsbergen current and sea ice North of Svalbard , 2009 .

[50]  J. Swift,et al.  Sources to the East Greenland Current and its contribution to the Denmark Strait Overflow , 2008 .

[51]  J. Rogers,et al.  The Odden ice feature of the Greenland Sea and its association with atmospheric pressure, wind, and surface flux variability from reanalyses , 2008 .

[52]  J. Jungclaus,et al.  Arctic freshwater export in the 20th and 21st centuries , 2007 .

[53]  W. Emery,et al.  A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea‐ice loss , 2007 .

[54]  I. Yashayaev Hydrographic changes in the Labrador Sea, 1960–2005 , 2007 .

[55]  Michael P. Meredith,et al.  The large‐scale freshwater cycle of the Arctic , 2006 .

[56]  J. Walsh,et al.  Trajectory Shifts in the Arctic and Subarctic Freshwater Cycle , 2006, Science.

[57]  U. Schauer,et al.  Cooling of the West Spitsbergen Current: Isopycnal diffusion by topographic vorticity waves , 2006 .

[58]  Mark A. Johnson,et al.  Arctic decadal variability from an idealized atmosphere‐ice‐ocean model: 2. Simulation of decadal oscillations , 2006 .

[59]  Mark A. Johnson,et al.  Arctic decadal variability from an idealized atmosphere-ice-ocean model: 1. Model description, calibration, and validation , 2006 .

[60]  John E. Walsh,et al.  Dipole Anomaly in the Winter Arctic Atmosphere and Its Association with Sea Ice Motion , 2006 .

[61]  Ron Lindsay,et al.  The thinning of Arctic sea ice, 1988-2003 : Have we passed a tipping point? , 2005 .

[62]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[63]  D. Rothrock,et al.  Changes in the thickness distribution of Arctic sea ice between 1958--1970 and 1993--1997 , 2004 .

[64]  K. A. Orvik,et al.  Coherent variability of the Norwegian Atlantic Slope Current derived from TOPEX/ERS altimeter data , 2004 .

[65]  J. Wallace,et al.  Variations in the age of Arctic sea‐ice and summer sea‐ice extent , 2004 .

[66]  P. Wadhams,et al.  The multi‐year development of long‐lived convective chimneys in the Greenland Sea , 2004 .

[67]  D. A. Rothrock,et al.  Modeling Global Sea Ice with a Thickness and Enthalpy Distribution Model in Generalized Curvilinear Coordinates , 2003 .

[68]  Peter A. Rochford,et al.  Mixed layer depth variability over the global ocean , 2003 .

[69]  Josefino C. Comiso,et al.  A rapidly declining perennial sea ice cover in the Arctic , 2002 .

[70]  R. Clarke,et al.  Hydrography of the Labrador Sea during Active Convection , 2002 .

[71]  James W. Hurrell,et al.  North Atlantic climate variability: phenomena, impacts and mechanisms , 2001 .

[72]  Leif Toudal Pedersen,et al.  Seasonal and interannual variability of the Odden ice tongue and a study of environmental effects , 2001 .

[73]  V. Ivanov,et al.  Interannual variability in water masses in the Greenland Sea and adjacent areas , 2001 .

[74]  S. Østerhus,et al.  Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing , 2000 .

[75]  L. Mysak,et al.  Simulation of the interannual variability of the wind-driven Arctic sea-ice cover during 1958–1998 , 2000 .

[76]  Vladimir F. Radionov,et al.  Snow Depth on Arctic Sea Ice , 1999 .

[77]  R. Kwok Recent changes in Arctic Ocean sea ice motion associated with the North Atlantic Oscillation , 1999 .

[78]  Ron Kwok,et al.  Variability of Fram Strait ice flux and North Atlantic Oscillation , 1999 .

[79]  John Marshall,et al.  Open‐ocean convection: Observations, theory, and models , 1999 .

[80]  Ola M. Johannessen,et al.  Greenland Sea Odden sea ice feature: Intra-annual and interannual variability , 1998 .

[81]  Nina Nordlund,et al.  Monitoring ice thickness in Fram Strait , 1998 .

[82]  Peter Wadhams,et al.  The development of the Odden ice tongue in the Greenland Sea during winter 1993 from remote sensing and field observations , 1996 .

[83]  J. Fischer,et al.  Preconditioning the Greenland Sea for deep convection: Ice formation and ice drift , 1995 .

[84]  E. D’Asaro,et al.  Cooling of the West Spitsbergen Current: Wintertime Observations West of Svalbard , 1994 .

[85]  D. Dukhovskoy,et al.  Thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 2: indices of intensity of deep convection , 2019, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa.

[86]  D. Dukhovskoy,et al.  Thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 1: localization of the deep convection sites , 2018 .

[87]  J. C. Comiso,et al.  Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3 , 2017 .

[88]  В. А. Алексеев,et al.  Возрастание воздействия атлантических вод на ледяной покров Северного Ледовитого океана , 2014 .

[89]  G. Moore,et al.  Cold European winters: interplay between the NAO and the East Atlantic mode , 2012 .

[90]  R. Kwok,et al.  Uncertainty in modeled arctic sea ice volume. J Geophys Res 117:C00D06 , 2011 .

[91]  M. Houssais,et al.  Forcing of oceanic heat anomalies by air‐sea interactions in the Nordic Seas area , 2011 .

[92]  Elin Bondevik Studies of Eddies in the Marginal Ice Zone Along the East Greenland Current Using Spaceborne Synthetic Aperture Radar (SAR) , 2011 .

[93]  S. Olsen,et al.  The Inflow of Atlantic Water, Heat, and Salt to the Nordic Seas Across the Greenland–Scotland Ridge , 2008 .

[94]  K. A. Orvik,et al.  Volume and Heat Transports to the Arctic Ocean Via the Norwegian and Barents Seas , 2008 .

[95]  Ron Kwok,et al.  Fram Strait sea ice outflow , 2004 .

[96]  T. Vinje,et al.  The ice transport through the Fram Strait , 1986 .

[97]  D. Smeed,et al.  Observed decline of the Atlantic Meridional Overturning circulation 2004 to 2012 , 2014 .