Solving resource-constrained construction scheduling problems with overlaps by metaheuristic

AbstractThe paper concerns the problem of roadworks scheduling executed in the flow-shop system. Works may be performed parallelly with the acceleration (overlaps) of construction project, i.e. the following work on the assembly line can begin before the completion of the predecessor work. Taking into account the acceleration enables accurate modeling of complex real construction processes. The above fact can greatly shorten the time of realization of construction process which has a direct impact on reducing costs. The considered issue belongs to the class of NP-hard problems. We introduce the new: mathematical model, specific properties as an acceleration tools, as well as two new optimization algorithms for the problem considered: construction and tabu search. The execution of algorithms was illustrated on the example of a case study concerning the construction of roads. They were also verified on the examples taken from the literature and on already completed construction processes. The obtained resul...

[1]  Onur Behzat Tokdemir,et al.  Effect of learning on line-of-balance scheduling , 2001 .

[2]  Ahmed El Hilali Alaoui,et al.  Flow Shop Scheduling Problem with Transportation Times, Two-Robots and Inputs/Outputs with Limited Capacity , 2012 .

[3]  Jatinder N. D. Gupta,et al.  Flowshop scheduling research after five decades , 2006, Eur. J. Oper. Res..

[4]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[5]  Photios G. Ioannou,et al.  Scheduling projects with repeating activities , 1998 .

[6]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[7]  E. Nowicki,et al.  A fast tabu search algorithm for the permutation flow-shop problem , 1996 .

[8]  Edmundas Kazimieras Zavadskas,et al.  Risk assessment of construction projects , 2010 .

[9]  Tarek Hegazy Optimization of construction time-cost trade-off analysis using genetic algorithms , 1999 .

[10]  David W. Johnston,et al.  Application of Linear Scheduling , 1986 .

[11]  Dulcy M. Abraham,et al.  Resource Leveling of Linear Schedules Using Integer Linear Programming , 1998 .

[12]  Wojciech Bozejko,et al.  Solving the flow shop problem by parallel tabu search , 2002, Proceedings. International Conference on Parallel Computing in Electrical Engineering.

[13]  James E. Rowings,et al.  Linear Scheduling Model: Development of Controlling Activity Path , 1998 .

[14]  Wojciech Bozejko,et al.  Parallel Genetic Algorithm for the Flow Shop Scheduling Problem , 2003, PPAM.

[15]  Mieczysław Wodecki A block approach to earliness-tardiness scheduling problems , 2009 .

[16]  O. Moselhi,et al.  Fuzzy vs Probabilistic Scheduling , 1995 .

[17]  Wojciech Bożejko,et al.  Applying metaheuristic strategies in construction projects management , 2012 .

[18]  David W. Johnston LINEAR SCHEDULING METHOD FOR HIGHWAY CONSTRUCTION , 1981 .

[19]  Lei Ren,et al.  Cloud manufacturing: a new manufacturing paradigm , 2014, Enterp. Inf. Syst..

[20]  Inyong Ham,et al.  A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem , 1983 .

[21]  Kris G. Mattila,et al.  Comparison of Linear Scheduling Model and Repetitive Scheduling Method , 2003 .

[22]  Mieczysław Wodecki,et al.  A very fast tabu search algorithm for the permutation flow shop problem with makespan criterion , 2004, Comput. Oper. Res..

[23]  Deepak Gupta Branch and Bound Technique for three stage Flow Shop Scheduling Problem Including Breakdown Interval and Transportation Time , 2012 .

[24]  Wojciech Bozejko,et al.  On the theoretical properties of swap multimoves , 2007, Oper. Res. Lett..

[25]  Wojciech Bożejko,et al.  Time/cost optimization using hybrid evolutionary algorithm in construction project scheduling , 2008 .

[26]  Wojciech Bozejko,et al.  Parallel Scatter Search Algorithm for the Flow Shop Sequencing Problem , 2007, PPAM.

[27]  Takeshi Yamada,et al.  Genetic Algorithms, Path Relinking, and the Flowshop Sequencing Problem , 1998, Evolutionary Computation.

[28]  Hideo Tanaka,et al.  Modified simulated annealing algorithms for the flow shop sequencing problem , 1995 .

[29]  Wojciech Bozejko,et al.  Solving the Flow Shop Problem by Parallel Simulated Annealing , 2001, PPAM.

[30]  B. Karwat Optimization of production schedules in the steel production system , 2012 .

[31]  Boyd C. Paulson,et al.  Automation and robotics for construction , 1985 .

[32]  Khaled A El-Rayes,et al.  Optimizing Resource Utilization for Repetitive Construction Projects , 2001 .

[33]  Gunnar Lucko,et al.  Float Types in Linear Schedule Analysis with Singularity Functions , 2009 .