Algebraic Aspects of Orthomodular Lattices

In this survey article we try to give an up-to-date account of certain aspects of the theory of ortholattices (abbreviated OLs), orthomodular lattices (abbreviated OMLs) and modular ortholattices (abbreviated MOLs), not hiding our own research interests. Since most of the questions we deal with have their origin in Universal Algebra, we start with a section discussing the basic concepts and results of Universal Algebra without proofs. In the next three sections we discuss, mostly with proofs, the basic results and standard techniques of the theory of OMLs. In the remaining five sections we work our way to the border of present day research, with no or only sketchy proofs. Section 5 deals with products and subdirect products, section 6 with free structures and section 7 with classes of OLs defined by equations. In section 8 we discuss embeddings of OLs into complete ones. The last section deals with questions originating in Category Theory, mainly amalgamation, epimorphisms and monomorphisms. The later sections of this paper contain an abundance of open problems. We hope that this will initiate further research.

[1]  G. Grätzer General Lattice Theory , 1978 .

[2]  M. Donald MacLaren ATOMIC ORTHOCOMPLEMENTED LATTICES , 1964 .

[3]  Robert Goldblatt,et al.  The Stone Space of an Ortholattice , 1975 .

[4]  Günter Bruns,et al.  Projective orthomodular lattices II , 1997 .

[5]  Melvin F. Janowitz,et al.  Boolean products of lattices , 1996 .

[6]  Alasdair Urquhart,et al.  A topological representation theory for lattices , 1978 .

[7]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[8]  Michael Roddy,et al.  A Finitely Generated Modular Ortholattice , 1992, Canadian Mathematical Bulletin.

[9]  Fumitomo Maeda,et al.  Theory of symmetric lattices , 1970 .

[10]  M. Gehrke,et al.  Bounded Lattice Expansions , 2001 .

[11]  R. P. Dilworth,et al.  Algebraic theory of lattices , 1973 .

[12]  H. M. MACNEILLEf,et al.  Partially ordered sets , 1937 .

[13]  Completions of orthomodular lattices II , 1993 .

[14]  Irreducible orthomodular lattices which are simple , 1992 .

[15]  Richard J. Greechie,et al.  Orthomodular Lattices Admitting No States , 1971 .

[16]  Bernhard Banaschewski,et al.  Hüllensysteme und Erweiterung von Quasi‐Ordnungen , 1956 .

[17]  Michael Roddy Varieties of modular ortholattices , 1987 .

[18]  An orthomodular analogue of the Birkhoff-Menger theorem , 1984 .

[19]  Ladislav Beran,et al.  Orthomodular Lattices: Algebraic Approach , 1985 .

[20]  Richard J. Greechie,et al.  On the structure of orthomodular lattices satisfying the chain condition , 1968 .

[21]  Günter Bruns,et al.  Varieties of Orthomodular Lattices , 1971, Canadian Journal of Mathematics.

[22]  Michael S. Roddy On the word problem for orthocomplemented modular lattices , 1989 .

[23]  John Harding,et al.  Amalgamation of Ortholattices , 1997 .

[24]  R. Baer Polarities in finite projective planes , 1946 .

[25]  J. Harding Orthmodular lattices whose MacNeille completions are not orthomodular , 1991 .

[26]  John Harding,et al.  Completions of orthomodular lattices , 1990 .

[27]  John Harding,et al.  Epimorphisms in Certain Varieties of Algebras , 2000, Order.

[28]  Huzihiro Araki,et al.  A remark on Piron's paper , 1966 .

[29]  Sylvia Pulmannová,et al.  Orthomodular structures as quantum logics , 1991 .

[30]  Markus Dichtl Astroids and pastings , 1984 .

[31]  G. Kalmbach Orthomodular lattices do not satisfy any special lattice equation , 1977 .

[32]  Michael Roddy,et al.  Projective Orthomodular Lattices , 1994, Canadian Mathematical Bulletin.