Numerical Methods for Solving the Cahn–Hilliard Equation and Its Applicability to Related Energy-Based Models

In this paper, we review some numerical methods presented in the literature in the last years to approximate the Cahn–Hilliard equation. Our aim is to compare the main properties of each one of the approaches to try to determine which one we should choose depending on which are the crucial aspects when we approximate the equations. Among the properties that we consider desirable to control are the time accuracy order, energy-stability, unique solvability and the linearity or nonlinearity of the resulting systems. In particular, we concern about the iterative methods used to approximate the nonlinear schemes and the constraints that may arise on the physical and computational parameters. Furthermore, we present the connections of the Cahn–Hilliard equation with other physically motivated systems (not only phase field models) and we state how the ideas of efficient numerical schemes in one topic could be extended to other frameworks in a natural way.

[1]  Robert Nürnberg,et al.  Adaptive finite element methods for Cahn-Hilliard equations , 2008 .

[2]  Francisco Guillén-González,et al.  Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models , 2014, Comput. Math. Appl..

[3]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[4]  Fatih Celiker,et al.  Hybridizable Discontinuous Galerkin Methods for Timoshenko Beams , 2010, J. Sci. Comput..

[5]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[6]  Jie Shen,et al.  Second-order Convex Splitting Schemes for Gradient Flows with Ehrlich-Schwoebel Type Energy: Application to Thin Film Epitaxy , 2012, SIAM J. Numer. Anal..

[7]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[8]  D. Kwak,et al.  Energetic variational approach in complex fluids: Maximum dissipation principle , 2009 .

[9]  Sébastian Minjeaud An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model , 2013 .

[10]  Santiago Badia,et al.  Finite element approximation of nematic liquid crystal flows using a saddle-point structure , 2011, J. Comput. Phys..

[11]  S. M. Wise,et al.  Unconditionally Stable Finite Difference, Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations , 2010, J. Sci. Comput..

[12]  F. Lin Nonlinear theory of defects in nematic liquid crystals; Phase transition and flow phenomena , 1989 .

[13]  Paul Papatzacos,et al.  Diffuse-Interface Models for Two-Phase Flow , 2000 .

[14]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .

[15]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[16]  Juan Vicente Gutiérrez-Santacreu,et al.  A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model , 2013 .

[17]  Franck Boyer,et al.  Numerical schemes for a three component Cahn-Hilliard model , 2011 .

[18]  Charles M. Elliott,et al.  Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy , 1992 .

[19]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[20]  C. M. Elliott,et al.  A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .

[21]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[22]  Hui Zhang,et al.  An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics , 2007, J. Comput. Phys..

[23]  Q. Du,et al.  Energetic variational approaches in modeling vesicle and fluid interactions , 2009 .

[24]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[25]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[26]  Liyong Zhu,et al.  ANALYSIS OF A MIXED FINITE ELEMENT METHOD FOR A PHASE FIELD BENDING ELASTICITY MODEL OF VESICLE , 2006 .

[27]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[28]  Qi Wang,et al.  Energy law preserving C0 finite element schemes for phase field models in two-phase flow computations , 2011, J. Comput. Phys..

[29]  Junseok Kim,et al.  Phase field computations for ternary fluid flows , 2007 .

[30]  Qiang Du,et al.  Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations , 2006 .

[31]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[32]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[33]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[34]  Qiang Du,et al.  ANALYSIS OF A PHASE FIELD NAVIER-STOKES VESICLE-FLUID INTERACTION MODEL , 2007 .

[35]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[36]  Charles M. Elliott,et al.  On the Cahn-Hilliard equation , 1986 .

[37]  Chun Liu,et al.  Simulations of singularity dynamics in liquid crystal flows: A C0 finite element approach , 2006, J. Comput. Phys..

[38]  Olga Wodo,et al.  Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem , 2011, J. Comput. Phys..

[39]  Helmut Abels,et al.  Strong Well-posedness of a Diffuse Interface Model for a Viscous, Quasi-incompressible Two-phase Flow , 2011, SIAM J. Math. Anal..

[40]  H. Abels,et al.  Thermodynamically Consistent, Frame Indifferent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2011, 1104.1336.

[41]  P. Hohenberg,et al.  Theory of Dynamic Critical Phenomena , 1977 .

[42]  Francisco,et al.  SPLITTING SCHEMES FOR A NAVIER-STOKES-CAHN-HILLIARD MODEL FOR TWO FLUIDS WITH DIFFERENT DENSITIES , 2014 .

[43]  Junseok Kim,et al.  CONSERVATIVE MULTIGRID METHODS FOR TERNARY CAHN-HILLIARD SYSTEMS ∗ , 2004 .

[44]  Andreas Prohl,et al.  Error analysis of a mixed finite element method for the Cahn-Hilliard equation , 2004, Numerische Mathematik.

[45]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[46]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[47]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[48]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  Endre Süli,et al.  Discontinuous Galerkin Finite Element Approximation of the Cahn-Hilliard Equation with Convection , 2009, SIAM J. Numer. Anal..

[50]  Héctor D. Ceniceros,et al.  TRACKING FLUID INTERFACES APPROACHING SINGULAR EVENTS , 2009 .

[51]  L. Segel,et al.  Nonlinear aspects of the Cahn-Hilliard equation , 1984 .

[52]  Chun Liu,et al.  Existence of Solutions for the Ericksen-Leslie System , 2000 .

[53]  Stig Larsson,et al.  THE CAHN-HILLIARD EQUATION , 2007 .

[54]  Peter W. Bates,et al.  The Dynamics of Nucleation for the Cahn-Hilliard Equation , 1993, SIAM J. Appl. Math..

[55]  Francisco Guillén-González,et al.  On linear schemes for a Cahn-Hilliard diffuse interface model , 2013, J. Comput. Phys..

[56]  Junseok Kim,et al.  Phase field modeling and simulation of three-phase flows , 2005 .

[57]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[58]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[59]  Jian Zhang,et al.  Adaptive Finite Element Method for a Phase Field Bending Elasticity Model of Vesicle Membrane Deformations , 2008, SIAM J. Sci. Comput..

[60]  Xiaobing Feng,et al.  Fully Discrete Finite Element Approximations of the Navier-Stokes-Cahn-Hilliard Diffuse Interface Model for Two-Phase Fluid Flows , 2006, SIAM J. Numer. Anal..

[61]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[62]  E. Mello,et al.  Numerical study of the Cahn–Hilliard equation in one, two and three dimensions , 2004, cond-mat/0410772.

[63]  Junseok Kim Phase-Field Models for Multi-Component Fluid Flows , 2012 .

[64]  van der Kg Kristoffer Zee,et al.  Stabilized second‐order convex splitting schemes for Cahn–Hilliard models with application to diffuse‐interface tumor‐growth models , 2014, International journal for numerical methods in biomedical engineering.

[65]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[66]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[67]  Andreas Prohl,et al.  Finite Element Approximations of the Ericksen-Leslie Model for Nematic Liquid Crystal Flow , 2008, SIAM J. Numer. Anal..

[68]  Jie Shen,et al.  A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities , 2010, SIAM J. Sci. Comput..

[69]  Harald Garcke,et al.  Existence of Weak Solutions for a Diffuse Interface Model for Two-Phase Flows of Incompressible Fluids with Different Densities , 2011, Journal of Mathematical Fluid Mechanics.