A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions

A new intrinsic localization algorithm is suggested based on a recently developed mathematical measure of localization. No external criteria are used to define a priori bonds, lone pairs, and core orbitals. It is shown that the method similarly to Edmiston–Ruedenberg’s localization prefers the well established chemical concept of σ–π separation, while on the other hand, works as economically as Boys’ procedure. For the application of the new localization algorithm, no additional quantities are to be calculated, the knowledge of atomic overlap intergrals is sufficient. This feature allows a unique formulation of the theory, adaptable for both ab initio and semiempirical methods, even in those cases where the exact form of the atomic basis functions is not defined (like in the EHT and PPP calculations). The implementation of the procedure in already existing program systems is particularly easy. For illustrative examples, we compare the Edmiston–Ruedenberg and Boys localized orbitals with those calculated b...

[1]  A. Perico,et al.  Uniform Localization of Atomic and Molecular Orbitals. II , 1967 .

[2]  K. Purcell,et al.  Localized virtual and occupied molecular orbitals , 1987 .

[3]  E. Switkes,et al.  Localized Bonds in SCF Wavefunctions for Polyatomic Molecules. I. Diborane , 1969 .

[4]  P. Mezey,et al.  A method for the characterization of molecular conformations , 1987 .

[5]  J. Pipek Controlled orthogonalization of localized orbitals , 1985 .

[6]  Gustavo A. Arteca,et al.  Shape group studies of molecular similarity and regioselectivity in chemical reactions , 1988 .

[7]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals. II , 1965 .

[8]  Local and long-range correlation in extended systems , 1986 .

[9]  Paul G. Mezey,et al.  Group theory of shapes of asymmetric biomolecules , 1987 .

[10]  B. Duke Linnett's double quartet theory and localised orbitals , 1987 .

[11]  Joseph G. Hoffman,et al.  Quantum Theory of Atoms, Molecules and the Solid State: A Tribute to John C. Slater , 1967 .

[12]  Frank Weinhold,et al.  Natural localized molecular orbitals , 1985 .

[13]  James J. P. Stewart,et al.  A new rapid method for orbital localisation , 1982 .

[14]  J. Leonard,et al.  Quadratically convergent calculation of localized molecular orbitals , 1982 .

[15]  David N. Beratan,et al.  Localized orbitals and the Fermi hole , 1982 .

[16]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[17]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[18]  W. Förner Coupled cluster studies. IV. Analysis of the correlated wavefunction in canonical and localized orbital basis for ethylene, carbon monoxide, and carbon dioxide , 1987 .

[19]  Approximate upper bound for two-electron integrals of molecular orbitals , 1984 .

[20]  István Mayer,et al.  Charge, bond order and valence in the AB initio SCF theory , 1983 .

[21]  H. Basch,et al.  Improved convergence in orbital localization methods , 1975 .

[22]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[23]  R. Haddon,et al.  Calculation of localised molecular orbitals with the Foster—Boys criterion , 1976 .

[24]  M. Böhm A simple extension of the external magnasco-perico localization procedure to the virtual MO-Space , 1981 .

[25]  R. Kari Parametrization and comparative analysis of the BFGS optimization algorithm for the determination of optimum linear coefficients , 1984 .

[26]  Thomas A. Halgren,et al.  Localized molecular orbitals for polyatomic molecules. I. A comparison of the Edmiston-Ruedenberg and Boys localization methods , 1974 .

[27]  C. Kozmutza,et al.  Application of the many‐body perturbation theory by using localized orbitals , 1983 .

[28]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[29]  J. J. Kaufman Symposium note: More new desirable computational strategies for ab initio calculations on large molecules, clusters, solids, and crystals , 1987 .

[30]  J. Pipek,et al.  Application of the many-body perturbation theory based on localized orbitals to cyclic polyenes , 1984 .

[31]  Paul G. Mezey,et al.  Dependence of MO shapes on a continuous measure of delocalization , 1988 .

[32]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies , 1955 .

[33]  Janos Ladik,et al.  Coupled-cluster studies. II. The role of localization in correlation calculations on extended systems , 1985 .

[34]  J. Cizek,et al.  Localization of the filled and virtual orbitals in the nucleotide bases , 1983 .

[35]  Paul G. Mezey,et al.  The shape of molecular charge distributions: Group theory without symmetry , 1987 .

[36]  Gustavo A. Arteca,et al.  Shape group studies of molecular similarity: relative shapes of Van der Waals and electrostatic potential surfaces of nicotinic agonists , 1988 .

[37]  J. Pipek Long-range behavior of the off-diagonal Fock matrix elements of localized molecular orbitals , 1988 .

[38]  J. Leonard,et al.  Calculation of localized molecular orbitals , 1984 .

[39]  W. Niessen,et al.  Density localization of atomic and molecular orbitals , 1973 .

[40]  J. Cizek,et al.  Coupled-cluster studies. I. Application to small molecules, basis set dependences , 1985 .

[41]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .