Dynamics of Inductive Inference in a Unified Framework

We present a model of inductive inference that includes, as special cases, Bayesian reasoning, case-based reasoning, and rule-based reasoning. This unified framework allows us to examine how the various modes of inductive inference can be combined and how their relative weights change endogenously. For example, we establish conditions under which an agent who does not know the structure of the data generating process will decrease, over the course of her reasoning, the weight of credence put on Bayesian vs. non-Bayesian reasoning. We illustrate circumstances under which probabilistic models are used until an unexpected outcome occurs, whereupon the agent resorts to more basic reasoning techniques, such as case-based and rule-based reasoning, until enough data are gathered to formulate a new probabilistic model.

[1]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[2]  David Lindley,et al.  Introduction to Probability and Statistics from a Bayesian Viewpoint , 1966 .

[3]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[4]  Rudolf Carnap,et al.  The continuum of inductive methods , 1952 .

[5]  I. Gilboa,et al.  Inductive Inference: An Axiomatic Approach , 2001 .

[6]  Akihiko Matsui,et al.  Expected utility and case-based reasoning , 2000, Math. Soc. Sci..

[7]  박정일,et al.  Wittgenstein, Tractatus Logico-Philosophicus , 2003 .

[8]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[9]  B. Finetti Sul significato soggettivo della probabilità , 1931 .

[10]  Itzhak Gilboa,et al.  Updating Ambiguous Beliefs , 1992, TARK.

[11]  Massimo Marinacci Decomposition and Representation of Coalitional Games , 1996, Math. Oper. Res..

[12]  Drew McDermott,et al.  Non-Monotonic Logic I , 1987, Artif. Intell..

[13]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[14]  I. Gilboa,et al.  Case-Based Decision Theory , 1995 .

[15]  Itzhak Gilboa,et al.  Canonical Representation of Set Functions , 1995, Math. Oper. Res..

[16]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[17]  Peter Gärdenfors,et al.  Induction, Conceptual Spaces and AI , 1990, Philosophy of Science.

[18]  Roger C. Schank,et al.  Explanation Patterns: Understanding Mechanically and Creatively , 1986 .

[19]  L. Wittgenstein Tractatus Logico-Philosophicus , 2021, Nordic Wittgenstein Review.

[20]  Isaac Levi,et al.  The Enterprise Of Knowledge , 1980 .

[21]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[22]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[23]  Frans Voorbraak,et al.  On the Justification of Dempster's Rule of Combination , 1988, Artif. Intell..

[24]  Itzhak Gilboa,et al.  A theory of case-based decisions , 2001 .

[25]  M. Norton,et al.  A Guide to Parallel Paragraph and Page References in Oxford University Press Editions of Hume's Enquiry concerning Human Understanding , 2002, Hume Studies.

[26]  R. Jeffrey Subjective Probability: The Real Thing , 2004 .

[27]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[28]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[29]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[30]  L. Kilian,et al.  What Do We Learn from the Price of Crude Oil Futures? , 2007 .

[31]  I. Gilboa Theory Of Decision Under Uncertainty , 2009 .

[32]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[33]  H. Akaike An approximation to the density function , 1954 .

[34]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Small Sample Performance , 1952 .

[35]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .

[36]  Sandy L. Zabell,et al.  Ramsey, truth, and probability , 2008 .

[37]  L. Shapley A Value for n-person Games , 1988 .

[38]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[39]  David Schmeidleis SUBJECTIVE PROBABILITY AND EXPECTED UTILITY WITHOUT ADDITIVITY , 1989 .

[40]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[41]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[42]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[43]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[44]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[45]  G. Choquet Theory of capacities , 1954 .

[46]  Judea Pearl,et al.  Fusion, Propagation, and Structuring in Belief Networks , 1986, Artif. Intell..

[47]  John McCarthy,et al.  Circumscription—a form of non-monotonic reasoning , 1987 .

[48]  J. Bennett,et al.  Enquiry Concerning Human Understanding , 2010 .

[49]  Christopher K. Riesbeck,et al.  Inside Case-Based Reasoning , 1989 .

[50]  Larry Samuelson,et al.  Subjectivity in Inductive Inference , 2009 .

[51]  David M. Kreps Notes On The Theory Of Choice , 1988 .

[52]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[53]  B. Silverman Density estimation for statistics and data analysis , 1986 .