Computation of Atomic Astrophysical Opacities

The revision of the standard Los Alamos opacities in the 1980–1990s by a group from the Lawrence Livermore National Laboratory (OPAL) and the Opacity Project (OP) consortium was an early example of collaborative big-data science, leading to reliable data deliverables (atomic databases, monochromatic opacities, mean opacities, and radiative accelerations) widely used since then to solve a variety of important astrophysical problems. Nowadays the precision of the OPAL and OP opacities, and even of new tables (OPLIB) by Los Alamos, is a recurrent topic in a hot debate involving stringent comparisons between theory, laboratory experiments, and solar and stellar observations in sophisticated research fields: the standard solar model (SSM), helio and asteroseismology, non-LTE 3D hydrodynamic photospheric modeling, nuclear reaction rates, solar neutrino observations, computational atomic physics, and plasma experiments. In this context, an unexpected downward revision of the solar photospheric metal abundances in 2005 spoiled a very precise agreement between the helioseismic indicators (the radius of the convection zone boundary, the sound-speed profile, and helium surface abundance) and SSM benchmarks, which could be somehow reestablished with a substantial opacity increase. Recent laboratory measurements of the iron opacity in physical conditions similar to the boundary of the solar convection zone have indeed predicted significant increases (30–400%), although new systematic improvements and comparisons of the computed tables have not yet been able to reproduce them. We give an overview of this controversy, and within the OP approach, discuss some of the theoretical shortcomings that could be impairing a more complete and accurate opacity accounting.

[1]  Chris L. Fryer,et al.  Relativistic opacities for astrophysical applications , 2015 .

[2]  M J Seaton,et al.  Atomic data for opacity calculations: XXII. Computations for 2472790 multiplet gf-values in Fe VIII to Fe XIII , 1995 .

[3]  Y. Opachich,et al.  Design of the opacity spectrometer for opacity measurements at the National Ignition Facility. , 2016, The Review of scientific instruments.

[4]  N. H. Magee,et al.  Comparison of Fe and Ni opacity calculations for a better understanding of pulsating stellar envelopes , 2012, 1201.6245.

[5]  C. Iglesias Enigmatic photon absorption in plasmas near solar interior conditions , 2015 .

[6]  T. W. Gorczyca,et al.  Auger decay of the photoexcited 2p-1nl Rydberg series in argon , 1999 .

[7]  C. Iglesias Iron-group opacities for B stars , 2015 .

[8]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[9]  P. Walczak,et al.  Wider pulsation instability regions for β Cephei and SPB stars calculated using new Los Alamos opacities , 2015 .

[10]  C. Fontes,et al.  Influence of the plasma environment on atomic structure using an ion-sphere model , 2015 .

[11]  H. M. Antia,et al.  Constraining solar abundances using helioseismology , 2004 .

[12]  J. E. Tabor,et al.  Radiative otacity tables for 40 stellar mixtures , 1976 .

[13]  T. Zurbuchen,et al.  Solar Models in Light of New High Metallicity Measurements from Solar Wind Data , 2016, 1603.05960.

[14]  Nicolas Grevesse,et al.  The Solar Chemical Composition , 2005 .

[15]  Jianmin Yuan,et al.  RADIATIVE OPACITY OF IRON STUDIED USING A DETAILED LEVEL ACCOUNTING MODEL , 2009 .

[16]  M. Seaton The Opacity Project , 1995 .

[17]  G. Hazak,et al.  A Configurationally-Resolved-Super-Transition-Arrays method for calculation of the spectral absorption coefficient in hot plasmas , 2012, 1204.2896.

[18]  G. Rochau,et al.  Iron-plasma transmission measurements at temperatures above 150 eV. , 2007, Physical review letters.

[19]  G. Loisel,et al.  Radiative properties of stellar envelopes: Comparison of asteroseismic results to opacity calculations and measurements for iron and nickel , 2013 .

[20]  W. Eissner,et al.  Techniques for the calculation of atomic structures and radiative data including relativistic corrections , 1974 .

[21]  S. Hansen,et al.  Comment on "Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity". , 2016, Physical review letters.

[22]  Forrest J. Rogers,et al.  Reexamination of the metal contribution to astrophysical opacity , 1987 .

[23]  Jianmin Yuan Atomic Data for Opacity Calculations , 2007 .

[24]  C. Iglesias Statistical line-by-line model for atomic spectra in intermediate coupling , 2012 .

[25]  University College London,et al.  On the importance of inner-shell transitions for opacity calculations , 2003, astro-ph/0308393.

[26]  G. Loisel,et al.  Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy , 2016 .

[27]  Dimitri Mihalas,et al.  The equation of state for stellar envelopes. I - An occupation probability formalism for the truncation of internal partition functions , 1988 .

[28]  T. N. Chang,et al.  Atomic photoionization in a changing plasma environment , 2013 .

[29]  A. B. Balantekin,et al.  Solar fusion cross sections II: the pp chain and CNO cycles , 2010, 1004.2318.

[30]  N. Simon,et al.  A Plea For Reexamining Heavy Element Opacities In Stars , 1982 .

[31]  P. Quinet,et al.  Plasma effects on atomic data for the K-vacancy states of highly charged iron ions , 2017, 1701.05757.

[32]  Wilson,et al.  Parametric potential method for generating atomic data. , 1988, Physical review. A, General physics.

[33]  William J. Chaplin,et al.  Asteroseismology of Solar-Type and Red-Giant Stars , 2013, 1303.1957.

[34]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[35]  Vasilios K. Kimiskidis,et al.  Introduction , 2019, Int. J. Neural Syst..

[36]  K. Berrington,et al.  RMATRX1: Belfast atomic R-matrix codes , 1995 .

[37]  S. Vagnozzi New Solar Metallicity Measurements , 2017, Atoms.

[38]  H. F. Astrophysics,et al.  Highly excited core resonances in photoionization of Fe XVII: Implications for plasma opacities , 2011, 1104.2881.

[39]  J. Abdallah,et al.  A NEW GENERATION OF LOS ALAMOS OPACITY TABLES , 2016, 1601.01005.

[40]  Rogers,et al.  Absorption measurements demonstrating the importance of Delta n=0 transitions in the opacity of iron. , 1992, Physical review letters.

[41]  M. Seaton,et al.  Atomic data for opacity calculations. XIII. Line profiles for transitions in hydrogenic ions , 1990 .

[42]  C. J. Zeippen,et al.  OPserver: interactive online computations of opacities and radiative accelerations , 2007, 0704.1583.

[43]  Tony Hey,et al.  The Fourth Paradigm: Data-Intensive Scientific Discovery , 2009 .

[44]  S. Kanbur,et al.  Comparative pulsation calculations with OP and OPAL opacities , 1994 .

[45]  A. Feigel,et al.  SOLAR OPACITY CALCULATIONS USING THE SUPER-TRANSITION-ARRAY METHOD , 2016, 1601.01930.

[46]  S. Salmon,et al.  FIRST NEW SOLAR MODELS WITH OPAS OPACITY TABLES , 2015, 1510.05600.

[47]  Jorgen Christensen-Dalsgaard,et al.  On the opacity change required to compensate for the revised solar composition , 2008, 0811.1001.

[48]  Claudio Mendoza,et al.  The Opacity Project―the TOPBASE atomic database , 1992 .

[49]  A. Feigel,et al.  The Effect of Ionic Correlations on Radiative Properties in the Solar Interior and Terrestrial Experiments , 2016, 1611.09339.

[50]  B. K. Sahoo,et al.  Plasma screening effects on the electronic structure of multiply charged Al ions using Debye and ion-sphere models , 2016, 1604.01735.

[51]  M. Seaton,et al.  Atomic data for opacity calculations. IV. Photoionisation cross sections for C II , 1987 .

[52]  Claudio Mendoza,et al.  Atomic data for opacity calculations. XIX. The magnesium isoelectronic sequence , 1993 .

[53]  Inga Kamp,et al.  European Physical Journal Web of Conferences , 2015 .

[54]  W. D. Robb,et al.  Electron scattering by complex atoms , 1971 .

[55]  C. Jeffery,et al.  Fe-bump instability: the excitation of pulsations in subdwarf B and other low-mass stars , 2006, astro-ph/0606594.

[56]  M. Seaton,et al.  Opacities for stellar envelopes , 1994 .

[57]  Thomas H. Zurbuchen,et al.  SOLAR METALLICITY DERIVED FROM IN SITU SOLAR WIND COMPOSITION , 2015 .

[58]  A. Feigel,et al.  LINE BROADENING AND THE SOLAR OPACITY PROBLEM , 2016, 1603.01153.

[59]  A. Hibbert CIV3 — A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths , 1984 .

[60]  P. Walczak,et al.  Complex asteroseismology of the $\beta$ Cep/SPB pulsator $\nu$ Eridani: constraints on opacities , 2009, 0912.0622.

[61]  P G Burke,et al.  Atomic data for opacity calculations. II. Computational methods , 1987 .

[62]  P. Walczak,et al.  Complex asteroseismology of the hybrid B‐type pulsator γ Pegasi: A test of stellar opacities , 2010, 1004.2366.

[63]  G. Hazak,et al.  Summation of the spectra of all partially resolved transition arrays in a supertransition array. , 2016, Physical review. E.

[64]  Gang Xiong,et al.  Time-Resolved Transmission Measurements of Warm Dense Iron Plasma , 2016 .

[65]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[66]  C. Blancard,et al.  OPACITY CALCULATIONS FOR SOLAR MIXTURES , 2015 .

[67]  M. Seaton Outer-region contributions to radiative transition probabilities , 1986 .

[68]  H. L. Zhang,et al.  Light element opacities from ATOMIC , 2013 .

[69]  C. Blancard,et al.  SOLAR MIXTURE OPACITY CALCULATIONS USING DETAILED CONFIGURATION AND LEVEL ACCOUNTING TREATMENTS , 2012 .

[70]  John N. Bahcall,et al.  New solar opacities, abundances, helioseismology, and neutrino fluxes , 2005 .

[71]  S. Turck-chièze,et al.  News from the opacity consortium OPAC , 2013 .

[72]  N. H. Magee,et al.  Radiative properties of stellar plasmas and open challenges , 2011, 1101.1170.

[73]  P. Walczak,et al.  Sound speed and oscillation frequencies for solar models evolved with Los Alamos ATOMIC opacities , 2015, Proceedings of the International Astronomical Union.

[74]  C. Iglesias,et al.  Partially resolved transition array model for atomic spectra , 2011 .

[75]  P. Quinet,et al.  Ipopv2: Photoionization of Ni XIV -- a test case , 2013, 1401.3122.

[76]  C. Mendoza,et al.  IPOPv2 online service for the generation of opacity tables , 2015, 1511.07260.

[77]  S. Nahar,et al.  Nahar and Pradhan Reply. , 2016, Physical review letters.

[78]  C. Iglesias Excited spectator electron effects on spectral line shapes , 2010 .

[79]  A. Serenelli Alive and well: A short review about standard solar models , 2016, The European Physical Journal A.

[80]  Helioseismological Implications of Recent Solar Abundance Determinations , 2004, astro-ph/0407060.

[81]  G. Loisel,et al.  A higher-than-predicted measurement of iron opacity at solar interior temperatures , 2014, Nature.

[82]  J. Ferguson,et al.  NEW SOLAR COMPOSITION: THE PROBLEM WITH SOLAR MODELS REVISITED , 2009, 0909.2668.

[83]  N. H. Magee,et al.  DETAILED OPACITY COMPARISON FOR AN IMPROVED STELLAR MODELING OF THE ENVELOPES OF MASSIVE STARS , 2016 .

[84]  A. Lançon,et al.  SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics , 2013 .

[85]  S. Turck-chièze The Standard Solar Model and beyond , 2016 .

[86]  Rozsnyai Photoabsorption in hot plasmas based on the ion-sphere and ion-correlation models. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[87]  C. Mendoza,et al.  On the structure of the iron K edge , 2002 .

[88]  P. Walczak,et al.  Interpretation of the BRITE oscillation data of the hybrid pulsator ν Eridani: a call for the modification of stellar opacities , 2016, 1612.05820.

[89]  Mau H. Chen,et al.  Partially resolved super transition array method , 2015 .

[90]  C. Mendoza,et al.  Oscillator strengths and photoionisation cross sections for positive ions in the sodium isoelectronic sequence , 1984 .

[91]  S. Nahar,et al.  Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity. , 2016, Physical review letters.

[92]  S. Hansen,et al.  Fe xvii Opacity at Solar Interior Conditions , 2017 .

[93]  M J Seaton Wing formulae for plasma-broadened spectral lines of hydrogenic ions , 1995 .

[94]  F. Gilleron,et al.  Accounting for highly excited states in detailed opacity calculations , 2015, 1503.08939.

[95]  C. J. Zeippen,et al.  Updated opacities from the Opacity Project , 2004, astro-ph/0410744.

[96]  N. Badnell,et al.  A comparison of Rosseland-mean opacities from OP and OPAL , 2004, astro-ph/0404437.

[97]  Forrest J. Rogers,et al.  Opacities for the solar radiative interior , 1991 .

[98]  M. Klapisch,et al.  HULLAC, an integrated computer package for atomic processes in plasmas , 2001 .

[99]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[100]  S. Basu,et al.  Implications of solar wind measurements for solar models and composition , 2016, 1604.05318.

[101]  M. Klapisch,et al.  Unresolved transition arrays , 1988 .

[102]  V. Baturin,et al.  Helioseismic calibration of the equation of state and chemical composition in the solar convective envelope , 2013 .

[103]  F. Rogers,et al.  Discrepancies between opal and OP opacities at high densities and temperatures , 1995 .