Locating stationary points of sorbate-zeolite potential energy surfaces using interval analysis

The diffusion of a sorbate molecule in a zeolite can be studied using transition-state theory. In this application, and other applications of transition-state theory, finding all local minima and saddle points of the potential energy surface is a critical computational step. A new strategy is described here for locating stationary points on a potential energy surface. The methodology is based on interval analysis, and provides a mathematical and computational guarantee that all stationary points will be found. The technique is demonstrated using potential energy surfaces arising in the use of transition-state theory to study the diffusion of three sorbates, xenon, methylene, and sulfur hexafluoride, at infinite dilution in silicalite.

[1]  Jörg Kärger,et al.  Diffusion in Zeolites and Other Microporous Solids , 1992 .

[2]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[3]  Mark A. Stadtherr,et al.  New interval methodologies for reliable chemical process modeling , 2002 .

[4]  B. C. Garrett,et al.  Current status of transition-state theory , 1983 .

[5]  W. M. Meier,et al.  Crystal structure and structure-related properties of ZSM-5 , 1981 .

[6]  Alexis T. Bell,et al.  Transition-state studies of xenon and sulfur hexafluoride diffusion in silicalite , 1991 .

[7]  M. Stadtherr,et al.  Robust process simulation using interval methods , 1996 .

[8]  A. Neumaier Interval methods for systems of equations , 1990 .

[9]  A. V. Kiselev,et al.  Molecular statistical calculation of gas adsorption by silicalite , 1985 .

[10]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[11]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[12]  Eugene P. Wigner,et al.  The transition state method , 1938 .

[13]  Youdong Lin,et al.  LP strategy for the interval-Newton method in deterministic global optimization , 2004 .

[14]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[15]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[16]  C. J. Tsai,et al.  Use of an eigenmode method to locate the stationary points on the potential energy surfaces of selected argon and water clusters , 1993 .

[17]  Y. Lin,et al.  Advances in Interval Methods for Deterministic Global Optimization in Chemical Engineering , 2004, J. Glob. Optim..

[18]  Christodoulos A. Floudas,et al.  Locating all transition states and studying the reaction pathways of potential energy surfaces , 1999 .

[19]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[20]  M. Stadtherr,et al.  Deterministic global optimization for error-in-variables parameter estimation , 2002 .

[21]  Vladik Kreinovich,et al.  COMPUTING EXACT COMPONENTWISE BOUNDS ON SOLUTIONS OF LINEAR SYSTEMS WITH INTERVAL DATA IS NP-HARD∗ , 1995 .

[22]  Alexis T. Bell,et al.  Sorption Thermodynamics, Siting, and Conformation of Long n-Alkanes in Silicalite As Predicted by Configurational-Bias Monte Carlo Integration , 1995 .

[23]  J. Baker An algorithm for the location of transition states , 1986 .