TIF1γ, a novel member of the transcriptional intermediary factor 1 family

[1]  H. de Thé,et al.  Retinoic acid and arsenic: towards oncogene-targeted treatments of acute promyelocytic leukaemia. , 1997, Biochimica et biophysica acta.

[2]  M. Hagmann,et al.  Silencing of RNA Polymerases II and III-Dependent Transcription by the KRAB Protein Domain of KOX1, a Krüppel-Type Zinc Finger Factor , 1997, Biological chemistry.

[3]  N. Shiama The p300/CBP family: integrating signals with transcription factors and chromatin. , 1997, Trends in cell biology.

[4]  H. Rochefort,et al.  Differential Interaction of Nuclear Receptors with the Putative Human Transcriptional Coactivator hTIF1* , 1997, The Journal of Biological Chemistry.

[5]  F. Jeanmougin,et al.  The bromodomain revisited. , 1997, Trends in biochemical sciences.

[6]  P. Chambon,et al.  TIF I α: chromatin-specific mediator for the ligand-dependent activation function AF-2 of nuclear receptors? , 1997 .

[7]  C. Glass,et al.  Nuclear receptor coactivators. , 1997, Current opinion in cell biology.

[8]  M. Vidal,et al.  A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  F. Jeanmougin,et al.  A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. , 1996, The EMBO journal.

[10]  W. Schaffner,et al.  Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1. , 1996, Nucleic acids research.

[11]  K. Horwitz,et al.  Nuclear receptor coactivators and corepressors. , 1996, Molecular endocrinology.

[12]  C. Disteche,et al.  The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB–binding protein , 1996, Nature Genetics.

[13]  L. Staudt,et al.  LYSP100-associated nuclear domains (LANDs): description of a new class of subnuclear structures and their relationship to PML nuclear bodies. , 1996, Blood.

[14]  D. Speicher,et al.  KAP-1, a novel corepressor for the highly conserved KRAB repression domain. , 1996, Genes & development.

[15]  P. Chambon A decade of molecular biology of retinoic acid receptors , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[16]  P. Freemont,et al.  Does this have a familiar RING? , 1996, Trends in biochemical sciences.

[17]  P. Chambon,et al.  Differential ligand‐dependent interactions between the AF‐2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. , 1996, The EMBO journal.

[18]  J. Gall,et al.  A zinc-binding domain is required for targeting the maternal nuclear protein PwA33 to lampbrush chromosome loops , 1995, The Journal of cell biology.

[19]  M. Koken,et al.  A C4HC3 zinc finger motif. , 1995, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[20]  P. Chambon,et al.  The N‐terminal part of TIF1, a putative mediator of the ligand‐dependent activation function (AF‐2) of nuclear receptors, is fused to B‐raf in the oncogenic protein T18. , 1995, The EMBO journal.

[21]  P. Chambon,et al.  A new version of the two-hybrid assay for detection of protein-protein interactions. , 1995, Nucleic acids research.

[22]  T. Gibson,et al.  The PHD finger: implications for chromatin-mediated transcriptional regulation. , 1995, Trends in biochemical sciences.

[23]  M. Kloc,et al.  The association of Xenopus nuclear factor 7 with subcellular structures is dependent upon phosphorylation and specific domains. , 1994, Experimental cell research.

[24]  N. Stuurman,et al.  The t(15;17) translocation alters a nuclear body in a retinoic acid‐reversible fashion. , 1994, The EMBO journal.

[25]  R. Evans,et al.  A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein , 1994, Cell.

[26]  Maria Carmo-Fonseca,et al.  Retinoic acid regulates aberrant nuclear localization of PML-RARα in acute promyelocytic leukemia cells , 1994, Cell.

[27]  H. de Thé,et al.  PML protein expression in hematopoietic and acute promyelocytic leukemia cells. , 1993, Blood.

[28]  R. Warrell,et al.  Acute promyelocytic leukemia. , 1993, The New England journal of medicine.

[29]  P. Freemont The RING Finger , 1993 .

[30]  H. Alder,et al.  The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene , 1992, Cell.

[31]  R. Losson,et al.  Functional analysis of the human estrogen receptor using a phenotypic transactivation assay in yeast. , 1992, Gene.

[32]  P. Freemont,et al.  A novel zinc finger coiled-coil domain in a family of nuclear proteins. , 1992, Trends in biochemical sciences.

[33]  I B Dawid,et al.  The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. , 1992, Nucleic acids research.

[34]  T. Fleming,et al.  Development of a highly efficient expression cDNA cloning system: application to oncogene isolation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[35]  H. Stunnenberg,et al.  Identification of a retinoic acid responsive element in the retinoic acid receptor & beta;gene , 1990, Nature.

[36]  N. Webster,et al.  The human estrogen receptor has two independent nonacidic transcriptional activation functions , 1989, Cell.

[37]  P. Chambon,et al.  Nuclear receptors enhance our understanding of transcription regulation. , 1988, Trends in genetics : TIG.

[38]  H. Hiai,et al.  Developmentally regulated expression of a human "finger"-containing gene encoded by the 5' half of the ret transforming gene , 1988, Molecular and cellular biology.

[39]  K. Wood,et al.  Firefly luciferase gene: structure and expression in mammalian cells , 1987, Molecular and cellular biology.

[40]  M. Sleigh,et al.  A nonchromatographic assay for expression of the chloramphenicol acetyltransferase gene in eucaryotic cells. , 1986, Analytical biochemistry.

[41]  D. Grimwade,et al.  Characterisation of the PML/RAR alpha rearrangement associated with t(15;17) acute promyelocytic leukaemia. , 1997, Current topics in microbiology and immunology.

[42]  P. Pandolfi,et al.  Acute promyelocytic leukemia: from genetics to treatment. , 1994, Blood.