A proof for a conjecture on the Randić index of graphs with diameter

Abstract The Randic index R ( G ) of a graph G is defined by R ( G ) = ∑ u v 1 d ( u ) d ( v ) , where d ( u ) is the degree of a vertex u in G and the summation extends over all edges u v of G . Aouchiche et al. proposed a conjecture on the relationship between the Randic index and the diameter: for any connected graph on n ≥ 3 vertices with the Randic index R ( G ) and the diameter D ( G ) , R ( G ) − D ( G ) ≥ 2 − n + 1 2 and R ( G ) D ( G ) ≥ n − 3 + 2 2 2 n − 2 , with equalities if and only if G is a path. In this work, we show that this conjecture is true for trees. Furthermore, we prove that for any connected graph on n ≥ 3 vertices with the Randic index R ( G ) and the diameter D ( G ) , R ( G ) − D ( G ) ≥ 2 − n + 1 2 , with equality if and only if G is a path.

[1]  Charles Delorme,et al.  On the Randic Image index , 2002, Discret. Math..

[2]  Pierre Hansen,et al.  Variable neighborhood search for extremal graphs. 23. On the Randic index and the chromatic number , 2009, Discret. Math..

[3]  Jiansheng Cai,et al.  On the Randic index of unicyclic graphs with girth g , 2007 .

[4]  Bolian Liu,et al.  Complete solution to a conjecture on Randic index , 2010, Eur. J. Oper. Res..

[5]  M. Randic Characterization of molecular branching , 1975 .

[6]  Bolian Liu,et al.  On a Conjecture about the Randi´ c Index and Diameter , 2010 .

[7]  L. Hall,et al.  Molecular connectivity in chemistry and drug research , 1976 .

[8]  Xueliang Li,et al.  A proof of a conjecture on the Randic index of graphs with given girth , 2009, Discret. Appl. Math..

[9]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[10]  Xueliang Li,et al.  On a relation between the Randic index and the chromatic number , 2010, Discret. Math..

[11]  Xueliang Li,et al.  A Survey on the Randic Index , 2008 .

[12]  Bolian Liu,et al.  ON A CONJECTURE ON RANDIĆ INDICES , 2022 .

[13]  N. Trinajstic Xueliang Li, Ivan Gutman: Mathematical Aspects of Randić-type Molecular Structure Descriptors , 2006 .

[14]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[15]  P. Hansen,et al.  Variable Neighborhood Search for Extremal Graphs: IV: Chemical Trees with Extremal Connectivity Index , 1999, Comput. Chem..

[16]  I. W Nowell,et al.  Molecular Connectivity in Structure-Activity Analysis , 1986 .

[17]  P. Hansen,et al.  Variable Neighborhood Search for Extremal Graphs. 19. Further Conjectures and Results about the Randic Index , 2006 .

[18]  Mustapha Aouchiche,et al.  On a conjecture about the Randic index , 2007, Discret. Math..

[19]  Béla Bollobás,et al.  Graphs of Extremal Weights , 1998, Ars Comb..

[20]  Mustapha Aouchiche,et al.  Variable neighborhood search for extremal graphs.17. Futher conjectures and results about the index , 2009, Discuss. Math. Graph Theory.

[21]  Xueliang Li,et al.  Randic index, Diameter and Average Distance 1 , 2009 .